Redefining Experimental, Empirical, and Exploratory Research in AI Era

Aithal P. S. 1 & Shubhrajyotsna Aithal 2&3

 Director, Poornaprajna Institute of Management, Udupi, India, Orcid Id: 0000-0002-4691-8736; E-Mail: psaithal@gmail.com
 Advisor, Aithal Research Consultancy, Mukka, Karnataka State, India,
 Visiting Faculty, Dept. of Chemistry, Poornaprajna College, Udupi, India, OrcidID: 0000-0003-1081-5820; E-mail: shubhraaithal@gmail.com

Area/Section: Technology Management. **Type of the Paper:** Exploratory Research.

Number of Peer Reviews: Two.

Type of Review: Peer Reviewed as per |C|O|P|E| guidance.

Indexed in: OpenAIRE.

DOI: https://doi.org/10.5281/zenodo.13947563

Google Scholar Citation: PIJPL

How to Cite this Paper:

Aithal, P. S. & Aithal, S., (2024). Redefining Experimental, Empirical, and Exploratory Research in AI Era. *Poornaprajna International Journal of Emerging Technologies (PIJET)*, *I*(1), 90-136. DOI: https://doi.org/10.5281/zenodo.13947563

Poornaprajna International Journal of Emerging Technologies (PIJET)

A Refereed International Journal of Poornaprajna, India.

Received on: 08/08/2024 Published on: 18/10/2024

© With Authors.

This work is licensed under a Creative Commons Attribution-Non-Commercial 4.0 International License subject to proper citation to the publication source of the work.

Disclaimer: The scholarly papers as reviewed and published by Poornaprajna Publication (P.P.), India are the views and opinions of their respective authors and are not the views or opinions of the PP. The PP disclaims of any harm or loss caused due to the published content to any party.

Redefining Experimental, Empirical, and Exploratory Research in AI Era

Aithal P. S. 1 & Shubhrajyotsna Aithal 2&3

Director, Poornaprajna Institute of Management, Udupi, India, Orcid Id: 0000-0002-4691-8736; E-Mail: psaithal@gmail.com
 Advisor, Aithal Research Consultancy, Mukka, Karnataka State, India,
 Visiting Faculty, Dept. of Chemistry, Poornaprajna College, Udupi, India, OrcidID: 0000-0003-1081-5820; E-mail: shubhraaithal@gmail.com

ABSTRACT

Purpose: To critically assess and enhance the integration of Artificial Intelligence (AI) in contemporary research methodologies. This study aims to evaluate the current use of AI across major research methods, identify gaps and opportunities, and establish comprehensive procedures for conducting and documenting AI-driven experimental, empirical, and exploratory research. By analyzing the advantages, benefits, constraints, and disadvantages using the ABCD framework, the research seeks to compare findings across different methods and assess their impact on AI-based research methodologies. Ultimately, the study aims to provide actionable insights and recommendations for advancing research practices in the AI era, ensuring that the methodologies evolve in line with technological advancements.

Methodology: Exploratory method is used. The required information is searched using suitable keywords using Google search engine, Google Scholar search engine, and AI-driven GPTs and analysed using suitable analysis frameworks.

Results & Analysis: The major research methods and scholarly publication formats of Experimental, Empirical, and Exploratory Research in AI Era are redefined, discussed, analysed, and interpreted with suitable suggestions.

Outcome/Value Addition: The study aims to provide actionable insights and recommendations for advancing research practices in the AI era, ensuring that the methodologies evolve in line with technological advancements.

Type of Research: Conceptual & Policy Research.

Keywords: Research methods, Experimental method, Empirical method, Exploratory method, Research in AI Era, AI in research, AI in Scholarly publication, ABCD analysis

1. INTRODUCTION:

1.1 Background and Context:

The AI era is characterized by rapid advancements in artificial intelligence technologies, transforming industries, societies, and the way knowledge is generated and applied. In this context, research methods play a crucial role in guiding the development, evaluation, and implementation of AI technologies. They provide the frameworks and tools necessary to ensure that AI systems are designed, tested, and deployed responsibly, ethically, and effectively. This overview discusses the importance of research methods in the AI era, highlighting their role in enhancing scientific rigor, addressing ethical concerns, enabling interdisciplinary collaboration, and fostering innovation. Research methods are the backbone of scientific inquiry, providing structured approaches to investigating complex problems. In the AI era, where technologies are increasingly complex and data-driven, robust research methods ensure the validity, reliability, and reproducibility of findings. By applying well-established experimental, empirical, and exploratory research methods, researchers can systematically test hypotheses, validate AI models, and refine algorithms. This rigor is essential for building AI systems that are trustworthy and capable of generalizing beyond specific datasets or applications. As AI systems become more pervasive, ethical considerations become paramount. Research methods offer the means to systematically explore and address ethical issues such as bias, fairness, transparency, and accountability. For instance, empirical research methods can be used to assess the impact of AI on different demographic groups, while exploratory research can uncover unforeseen ethical implications of AI

applications. By integrating ethical considerations into the research process, researchers can develop AI systems that align with societal values and contribute to the public good. The development and application of AI require insights from multiple disciplines, including computer science, statistics, psychology, sociology, and ethics. Research methods facilitate interdisciplinary collaboration by providing common frameworks and languages that different fields can use to contribute to AI research. For example, experimental research methods from psychology can be applied to study human-AI interaction, while statistical methods can be used to analyze large datasets generated by AI systems. This interdisciplinary approach enriches AI research and ensures that AI technologies are well-rounded and sensitive to various human factors. Research methods are not just about validating existing knowledge; they are also key to innovation (Crowther, D., & Lancaster, G. (2012). [1]). Exploratory research methods, in particular, are essential in the AI era for discovering new patterns, relationships, and applications of AI technologies. By allowing researchers to explore uncharted territories, these methods foster creativity and innovation, leading to the development of novel AI algorithms, applications, and solutions. Moreover, the iterative nature of research methods, where findings lead to new questions and investigations, continuously drives the advancement of AI technologies (Aithal, P. S., & Aithal, S. (2023). [2]).

In the AI era, research methods also play a critical role in informing policy and regulation. As governments and organizations grapple with the implications of AI, they rely on evidence-based research to guide decision-making. Research methods provide the tools to generate this evidence, whether through empirical studies assessing the impact of AI on employment or through experimental research testing the effectiveness of AI in healthcare. By producing robust, reliable evidence, research methods help shape policies that promote the responsible development and use of AI. Finally, research methods are essential for AI education and skill development. As AI becomes increasingly integrated into various fields, there is a growing need for professionals who understand how to conduct research in this domain. Research methods courses and training programs equip students and professionals with the skills needed to design and conduct AI research, critically evaluate AI studies, and apply AI technologies in their work. This knowledge is crucial for building a workforce capable of driving the AI revolution forward. Thus, in the AI era, research methods are more important than ever. They provide the foundation for scientific rigor, ethical AI development, interdisciplinary collaboration, and innovation. Moreover, they inform policy and regulation and support education and skill development in AI. As AI continues to evolve, the importance of research methods will only grow, ensuring that AI technologies are developed and applied in ways that benefit society as a whole.

Research methods are essential tools in the scientific process, enabling researchers to systematically investigate phenomena, generate new knowledge, and validate existing theories (Aithal, A., & Aithal, P. S. (2020). [3]). Among the various research methodologies, experimental, empirical, and exploratory methods are particularly significant. Each of these methods serves distinct purposes and is applied depending on the research question, objectives, and the nature of the phenomenon under investigation.

1.1 Experimental Research:

Experimental research is a highly controlled method that involves the manipulation of one or more variables to observe their effect on a dependent variable. This method is often regarded as the gold standard for establishing cause-and-effect relationships. By carefully designing experiments and controlling extraneous variables, researchers can isolate the effects of the independent variable, thereby providing strong evidence for causal inferences (Creswell & Creswell, 2017) [4]. Experimental research is widely used in fields such as psychology, medicine, and engineering, where understanding causal mechanisms is critical.

1.2 Empirical Research:

Empirical research, on the other hand, is grounded in observation and experience rather than theory alone. It involves the systematic collection and analysis of data to answer research questions and test hypotheses. Unlike experimental research, empirical research does not necessarily require the manipulation of variables. Instead, it relies on observational methods, surveys, and case studies to gather data from the real world (Patten & Newhart, 2017) [5]. Empirical research is essential for studying phenomena that cannot be manipulated experimentally, such as natural events, social behaviors, or historical trends.

1.3 Exploratory Research:

Exploratory research is a more flexible and open-ended approach, often used when the research problem is not well-defined or when little is known about the subject matter. The primary goal of exploratory research is to explore a phenomenon, identify patterns, and generate hypotheses for further study. This method is particularly useful in the early stages of research when the objective is to gather preliminary insights and understand the context of a problem (Stebbins, 2001) [6]. Exploratory research can involve a variety of methods, including qualitative techniques, literature reviews, and pilot studies, and is frequently used in fields like sociology, anthropology, and business [7].

Each of these research methods—experimental, empirical, and exploratory—plays a vital role in the advancement of knowledge across disciplines. Experimental research provides rigorous tests of cause-and-effect relationships, empirical research offers insights based on real-world data, and exploratory research opens new avenues of inquiry by identifying patterns and generating hypotheses. Together, these methods form a comprehensive toolkit for researchers, enabling them to approach complex questions from multiple angles and contribute to the ever-growing body of scientific knowledge.

2. THE NEED TO REDEFINE EXPERIMENTAL, EMPIRICAL, AND EXPLORATORY RESEARCH IN THE CONTEXT OF AI:

The rise of Artificial Intelligence (AI) is revolutionizing the way research is conducted, analyzed, and applied across disciplines. This transformation necessitates a redefinition of traditional research methodologies—specifically, experimental, empirical, and exploratory research—to address the unique challenges and opportunities that AI introduces. As AI continues to integrate deeper into various aspects of society and science, the need to adapt these research methods becomes increasingly critical.

2.1 Complexity and Interdisciplinarity:

AI research is inherently complex and interdisciplinary, involving diverse fields such as computer science, data science, neuroscience, ethics, and even philosophy. Traditional research methods were often developed within the boundaries of specific disciplines, where the variables and conditions could be more narrowly defined and controlled. However, AI's interdisciplinary nature challenges these boundaries, requiring a redefinition of experimental, empirical, and exploratory methods to handle the complexities and interactions across different domains (Boden, 2016) [8].

For example, in experimental research, the integration of AI necessitates new approaches to designing and conducting experiments. AI allows for the automation of experiment processes, handling vast amounts of data, and conducting simulations that were previously impossible. These capabilities require a shift in how experiments are conceptualized, from the formulation of hypotheses to the interpretation of results. The traditional experimental framework, which often relies on controlled conditions and linear hypotheses testing, must be adapted to include the dynamic, adaptive nature of AI systems (Marcus & Davis, 2019) [9].

2.2 Data-Driven Paradigm Shift:

One of the most significant changes AI brings to research is a shift towards a data-driven paradigm. In empirical research, where data collection and analysis are central, AI's ability to process and analyze large datasets fundamentally changes the research process. Traditional empirical research methods often focus on relatively small datasets, with carefully controlled variables. However, AI enables the analysis of vast amounts of unstructured data from diverse sources, such as social media, IoT devices, and large-scale databases (Domingos, (2015). [10]).

This shift requires a redefinition of empirical research methodologies to incorporate AI's data processing capabilities. For instance, the role of the researcher may shift from being primarily a data collector and analyzer to a data curator and interpreter, focusing on the ethical and contextual implications of AI-driven insights. Moreover, AI can uncover patterns and correlations in data that may not be immediately apparent to human researchers, necessitating new frameworks for hypothesis generation and testing in empirical research (Halevy, Norvig, & Pereira, (2009). [11]).

2.3 Ethical and Societal Considerations:

AI's integration into research brings forth significant ethical and societal considerations, particularly in how data is collected, analyzed, and applied. Traditional research methods, especially in experimental

and empirical contexts, were developed in environments where ethical considerations were more straightforward, often focusing on issues like consent and confidentiality. However, AI introduces new ethical dilemmas, such as algorithmic bias, data privacy, and the unintended consequences of AI-driven decisions (Floridi et al., (2018). [12]).

To address these challenges, there is a need to redefine research methodologies to incorporate ethical considerations at every stage of the research process. In experimental research, this might involve developing new protocols for ensuring fairness and transparency when using AI to conduct experiments. In empirical research, methodologies must be adapted to ensure that data collection and analysis are done in a way that respects privacy and mitigates bias. Exploratory research, which often ventures into uncharted territories, must include ethical foresight and stakeholder engagement to anticipate and address potential societal impacts (Mittelstadt, Allo, Taddeo, Wachter, & Floridi, (2016). [13]).

2.4 Speed and Scalability:

AI significantly increases the speed and scalability of research. Traditional research methods are often time-consuming and resource-intensive, with researchers manually collecting and analyzing data, conducting experiments, and interpreting results. AI changes this by enabling the rapid processing of data, automation of experiments, and real-time analysis, which can drastically reduce the time required to conduct research (Jordan & Mitchell, (2015). [14]).

This acceleration requires a redefinition of research methodologies to ensure that the speed of AI-driven research does not come at the expense of rigor or validity. In experimental research, AI's ability to run thousands of simulations quickly allows researchers to explore a wider range of variables and scenarios, but it also requires new methods for managing and interpreting large-scale experimental data. In empirical research, AI can handle large datasets at a scale previously unimaginable, but researchers must redefine their approaches to ensure that the speed of analysis does not lead to oversights or errors (Silver, (2016), [15]).

2.5 Emerging Research Questions:

AI opens up new areas of inquiry that were previously inaccessible or non-existent. Traditional research methods were developed to address specific types of questions within well-established domains. However, the capabilities of AI introduce new research questions, particularly in understanding AI itself, its applications, and its implications for society (Russell & Norvig, (2016). [16]).

Experimental research needs to be redefined to explore the behaviour of AI systems, their interactions with humans, and their performance in real-world settings. Empirical research must adapt to study the impacts of AI across different sectors, from healthcare to finance to education. Exploratory research, which is often at the forefront of discovering new theories and concepts, must be redefined to include the study of AI's broader implications, such as the nature of intelligence, the future of work, and the ethical boundaries of AI applications (Brynjolfsson & McAfee, (2017). [17].

Thus, as AI continues to evolve and permeate various aspects of research, the need to redefine traditional research methodologies becomes increasingly evident. Experimental, empirical, and exploratory research methods must be adapted to address the complexities, ethical considerations, and new opportunities that AI introduces. By redefining these methodologies, researchers can ensure that they are fully equipped to harness the potential of AI while mitigating its risks, ultimately leading to more robust, relevant, and impactful research outcomes.

3. EFFECT OF AI IN RESEARCH:

Artificial Intelligence (AI) has become a transformative force in the realm of research, revolutionizing how data is collected, analyzed, and interpreted across various disciplines. The impact of AI on research methods, particularly experimental, empirical, and exploratory research, is profound and multifaceted. AI's ability to process vast amounts of data, identify patterns, and make predictions has not only enhanced the efficiency and accuracy of traditional research methods but also necessitated the rethinking and redefinition of these methodologies to fully harness the potential of AI.

AI's influence on research is evident in several key areas, including automation, data analysis, and the generation of new research questions. AI-driven tools and algorithms can automate labor-intensive tasks such as data collection, processing, and analysis, which were previously time-consuming and prone to

human error. This automation enables researchers to focus more on interpreting results and developing new hypotheses, thereby accelerating the research process (Domingos, (2015). [10]).

Furthermore, AI enhances data analysis by enabling the processing of large and complex datasets, often referred to as "big data." Traditional statistical methods may struggle to handle the volume, variety, and velocity of data generated in modern research. AI algorithms, particularly machine learning techniques, can identify patterns and correlations in these datasets that might not be apparent through conventional analysis. This capability is crucial in fields such as genomics, climate science, and social sciences, where large-scale data analysis is essential (Jordan & Mitchell, (2015). [18]).

AI also opens up new avenues for research by generating questions that were previously unasked. The ability of AI to simulate complex systems, predict outcomes, and model scenarios creates opportunities for exploring areas that were previously inaccessible or difficult to study. This capacity is particularly important in interdisciplinary research, where AI can integrate knowledge and data from different fields to address complex problems (Russell & Norvig, (2016). [19]).

3.1 Experimental Research and AI:

Experimental research, which involves the manipulation of variables to determine cause-and-effect relationships, has been significantly impacted by AI. AI's ability to simulate experiments, automate procedures, and analyze outcomes has transformed experimental research in several ways. For instance, AI can automate the design and execution of experiments, reducing the time and resources required to conduct them. In scientific fields such as chemistry and biology, AI-driven simulations can model complex reactions and biological processes, allowing researchers to test hypotheses and predict outcomes without the need for costly and time-consuming physical experiments (Schmidt, Marques, Botti, & Glotzer, (2019). [20].

Moreover, AI enhances the analysis of experimental data by identifying patterns and correlations that might be missed by human researchers. Machine learning algorithms can sift through large datasets generated by experiments, providing insights that lead to more accurate and reliable conclusions. This capability is particularly useful in fields like neuroscience and drug discovery, where experiments often generate vast amounts of data that need to be analyzed (Subedi, D. K. (2013). [21].

3.2 Empirical Research and AI:

Empirical research, which is based on observation and experience rather than theory, has also been transformed by AI. The primary role of AI in empirical research is in data collection and analysis. AI tools can gather data from a wide range of sources, including social media, sensors, and online databases, much more efficiently than traditional methods. This allows for the collection of large, diverse datasets that can provide more comprehensive insights into the phenomena being studied (Halevy, Norvig, & Pereira, (2009). [22]).

AI's role in data analysis is particularly important in empirical research. Machine learning algorithms can process and analyze large datasets to identify trends, patterns, and anomalies that might not be evident through traditional statistical methods. This capability allows researchers to draw more accurate and nuanced conclusions from their data, leading to a deeper understanding of the subject under study. In fields such as economics, healthcare, and environmental science, AI-driven empirical research is leading to new discoveries and insights that were previously unattainable (Domingos, (2015). [18]).

3.3 Exploratory Research and AI:

Exploratory research, which is used to investigate an area where little is known and to generate new ideas or hypotheses, has been greatly influenced by AI. AI's ability to analyze large datasets and identify patterns makes it an invaluable tool in exploratory research. Researchers can use AI to explore new areas of study, generate hypotheses, and identify potential correlations that warrant further investigation. This is particularly important in fields such as social sciences and humanities, where exploratory research often involves analyzing complex, qualitative data (Brynjolfsson & McAfee, (2017). [23]).

AI also enables the exploration of complex systems and scenarios through simulation and modeling. In fields such as climate science and economics, AI-driven simulations allow researchers to explore the potential impacts of different variables and scenarios, leading to new insights and research directions. These simulations can reveal relationships and dynamics that might not be apparent through traditional

exploratory methods, thereby expanding the scope and depth of research (Marcus & Davis, (2019). [24]).

Thus, the integration of AI into research has had a profound effect on experimental, empirical, and exploratory research methods. AI's ability to automate processes, analyze large datasets, and generate new research questions has transformed these traditional research methods, making them more efficient, accurate, and expansive. As AI continues to evolve, it will undoubtedly continue to shape and redefine the way research is conducted, leading to new discoveries and insights across a wide range of disciplines.

4. RELATED WORK & CURRENT STATUS:

4.1 Current Status of Experimental, Empirical, and Exploratory Research Using Artificial Intelligence:

The integration of Artificial Intelligence (AI) into various research methodologies—experimental, empirical, and exploratory—has seen significant advancement in recent years. AI's capacity to process large datasets, automate complex tasks, and generate insights that were previously unattainable has transformed these traditional research methods, allowing for greater accuracy, efficiency, and scope.

Experimental Research and AI:

In experimental research, AI has become a vital tool for automating experimental procedures, optimizing experimental designs, and analyzing outcomes. The use of AI in experimental settings is particularly evident in fields such as drug discovery, materials science, and biotechnology. AI-driven platforms have been developed to simulate and predict the outcomes of experiments, reducing the need for costly and time-consuming physical trials. For example, AI models in drug discovery can predict the efficacy and safety of new compounds before they are tested in vivo, accelerating the drug development process (Schneider et al., 2020) [25].

Moreover, AI enhances the precision of experimental research by enabling real-time data analysis and decision-making. AI algorithms can process experimental data as it is generated, allowing researchers to adjust parameters and conditions dynamically, optimizing the experimental outcomes. This capability is particularly valuable in fields such as physics and engineering, where experimental conditions are often complex and require fine-tuning (Sanchez-Lengeling & Aspuru-Guzik, 2018) [26].

Empirical Research and AI:

Empirical research, which relies heavily on the collection and analysis of observational data, has greatly benefited from AI's ability to handle large datasets and uncover patterns that might not be apparent through traditional statistical methods. In the social sciences, for example, AI has been used to analyze vast amounts of data from social media, public records, and other digital sources to study human behaviour and societal trends. Machine learning algorithms can detect subtle correlations and causal relationships in data, providing deeper insights into the phenomena being studied (Lazer et al., 2020 [27]).

AI's impact on empirical research is also notable in the field of economics, where AI tools are used to analyze economic indicators, financial markets, and consumer behaviour. AI-driven models can predict economic trends and outcomes with greater accuracy than traditional econometric models, enabling policymakers and businesses to make more informed decisions (Agrawal, Gans, & Goldfarb, 2018 [28]). Furthermore, in healthcare, AI is being employed to analyze patient data, identify risk factors, and predict the outcomes of medical treatments, leading to more personalized and effective healthcare solutions (Esteva et al., 2019 [29]).

Exploratory Research and AI:

Exploratory research, which is used to investigate new areas and generate hypotheses, has been significantly enhanced by AI's ability to process and analyze unstructured data. AI enables researchers to explore vast datasets and identify patterns, trends, and anomalies that may suggest new avenues of research. In the field of environmental science, for example, AI is used to analyze satellite imagery and climate data, helping researchers to identify changes in ecosystems and predict future environmental conditions (Rolnick et al., 2019 [30]).

AI also plays a critical role in interdisciplinary exploratory research. By integrating data and methodologies from different fields, AI can help researchers explore complex problems that require a multidisciplinary approach. This has led to the emergence of new research fields, such as computational social science and digital humanities, where AI tools are used to analyze large datasets from diverse sources and generate new insights (Mayer-Schönberger & Cukier, 2013 [31]).

In summary, the current status of experimental, empirical, and exploratory research is increasingly defined by the integration of AI technologies. AI has enhanced the efficiency, accuracy, and scope of these research methods, enabling researchers to tackle more complex problems, analyze larger datasets, and generate new insights. However, this integration also poses challenges, such as the need for new ethical guidelines and the development of AI literacy among researchers. As AI continues to evolve, its role in research is likely to expand further, driving innovation across a wide range of disciplines. Table 1 presents a summary of some of the prominent papers on use of AI in different types of research methods.

Table 1: Review of the use of AI in different types of research methods

S. No.	Area	Focus/Outcome	Reference
1	Use of AI in experimental methods	This review outlines the fundamentals, advantages, and limitations of AI tools in water treatment. Artificial neural networks (ANNs), genetic algorithms (GA), and particle swarm optimization (PSO) are commonly used for predicting and optimizing pollutant removal processes. The article highlights the effectiveness of multilayer perception, fuzzy neural, radial basis function, and selforganizing map networks. It concludes that hybrid models combining ANNs with GA and PSO achieve high accuracy in water treatment, while also addressing the limitations and future developments of AI tools in environmental protection.	Fan, M., et al. (2018). [32]
2	Use of AI in experimental methods	This paper reviews AI-based techniques in optical transmission, covering component characterization, performance monitoring, and nonlinearity mitigation. It also examines AI applications in optical network control, management, planning, and operation for transport and access networks. Lastly, it highlights future opportunities and challenges where AI is expected to significantly impact optical networking.	Mata, J., et al. (2018). [33]
3	Use of AI in experimental methods	This review examines the limitations of conventional control methods like on/off, PI, and PID controllers in indoor spaces, noting their instability and energy inefficiency. It highlights recent research on AI-based methods that optimize energy use while maintaining thermal comfort. The focus is on machine learning (ML) algorithms for thermal comfort prediction and their application in building control systems. The review also identifies gaps in current research and suggests future directions.	Ngarambe, J., et al. (2020). [34]

4	Use of AI in empirical research methods	Empirical results are increasingly recognized as equally valuable as theoretical ones, offering solutions and insights that theory alone cannot provide. A recent workshop highlighted emerging trends in empirical research, bringing together experts from diverse fields such as robotics and knowledge-based systems.	Walsh, T. (1998). [35]
5	Use of AI in empirical research methods	The paper evaluates how AI-based GPTs assist researchers in experimental, empirical, and exploratory research by enhancing higher-level skills such as design, analysis, comparison, evaluation, interpretation, and knowledge creation.	Aithal, P. S., & Aithal, S. (2023). [36]
6	Use of AI in empirical research methods	This study examines AI research in online distance education, identifying three key themes: (1) educational data mining, learning analytics, and AI for adaptive learning, (2) algorithmic online educational spaces, ethics, and human agency, and (3) online learning through detection, identification, and prediction.	Dogan, M. E., Goru Dogan, T., & Bozkurt, A. (2023). [37]
7	Use of AI in exploratory research methods	Despite the rise of AI systems, results show a clear preference for human-generated advice. However, managers with low social comparison orientation are more likely to accept advice from AI, as indicated by moderation analysis.	Rizzo, C., Bagna, G., & Tuček, D. (2024). [38]
8	Use of AI in exploratory research methods	This study explores AI-driven supply chain research, analyzing emerging AI-based business models in various companies. It evaluates AI solutions and their value, identifying key areas of value creation and proposing a framework for designing business models for AI in supply chains.	Helo, P., & Hao, Y. (2022). [39]
9	Use of AI in exploratory research methods	This exploratory research uses a self-study approach to investigate ChatGPT's potential in education, finding its outputs often align with key research themes. ChatGPT shows promise as a tool for designing science units, rubrics, and quizzes, though educators should critically assess and adapt AI-generated resources. The study also used ChatGPT for editing and clarifying the research narrative, aiming to spark broader discussions on AI's role in science education.	Cooper, G. (2023). [40]

4.2 Research Gap & Research Agendas:

Desired Status of Experimental, Empirical, and Exploratory Research Using Artificial Intelligence Technology:

In the context of Artificial Intelligence (AI), the desired status of experimental, empirical, and exploratory research should aim to fully harness the potential of AI to enhance the rigor, efficiency, and scope of research methodologies. This involves integrating AI tools seamlessly into the research process while ensuring ethical standards, reproducibility, and transparency.

(1) Experimental Research:

The desired status of experimental research using AI should involve:

- Automation and Optimization: AI should be able to fully automate the design, execution, and analysis of experiments, minimizing human error and maximizing efficiency. AI-driven platforms should be capable of optimizing experimental conditions in real-time, ensuring the best possible outcomes.
- Reproducibility and Validation: AI tools should enhance the reproducibility of experiments by providing standardized protocols and validation techniques. This includes the use of AI to replicate experiments across different settings, confirming the reliability of results.
- Ethical Standards: AI must be integrated into experimental research in a manner that upholds ethical standards, particularly in fields such as medicine and psychology, where experiments involve human subjects.

(2) Empirical Research:

The desired status of empirical research should involve:

- Advanced Data Analysis: AI should be able to analyze large-scale datasets with unprecedented speed and accuracy, uncovering patterns and insights that were previously inaccessible. This includes the use of machine learning algorithms for predictive modeling and causal inference.
- **Real-time Data Integration:** AI systems should enable real-time data collection and analysis, allowing researchers to monitor and adjust studies dynamically. This is particularly important in social sciences and healthcare, where conditions can change rapidly.
- Transparency and Interpretability: AI models used in empirical research should be transparent and interpretable, allowing researchers to understand how conclusions are drawn and ensuring that results are explainable and trustworthy.

(3) Exploratory Research:

The desired status of exploratory research should involve:

- Cross-Disciplinary Integration: AI should facilitate the integration of data and methodologies from different disciplines, enabling researchers to explore complex problems from multiple perspectives. This can lead to the discovery of new fields and the development of innovative research frameworks.
- **Hypothesis Generation:** AI should assist in generating new hypotheses by identifying novel patterns and trends in unstructured data, guiding researchers towards promising areas of inquiry.
- Scalability and Adaptability: All tools should be scalable and adaptable, allowing researchers to explore both large-scale datasets and more focused inquiries with equal effectiveness.

4.3 Research Gaps:

Despite the advancements in AI, several gaps remain in its application to research methods:

- (1) Ethical and Bias Issues: AI models can perpetuate or even exacerbate existing biases in data, leading to skewed research outcomes. There is a need for research into methods that ensure AI-driven research remains unbiased and ethical.
- (2) Lack of Standardization: The integration of AI into research lacks standardization across different fields. This results in inconsistencies in how AI is applied and interpreted, affecting the comparability of research findings.
- (3) Interpretability and Transparency: Many AI models, especially deep learning algorithms, operate as "black boxes," making it difficult for researchers to understand how decisions are made. This lack of transparency can undermine trust in AI-driven research.
- **(4) Resource Accessibility:** Not all researchers have access to the computational resources required for advanced AI-driven research, creating disparities in research capabilities.

4.4 Future Research Agendas:

To address these gaps, future research should focus on the following areas as shown in table 2:

Table 2: Future research agendas AI-supported research methods

S. No.	Research Agenda	Objective	Approach
1	Development of	Develop and implement ethical	Collaborate across disciplines to
	Ethical AI	frameworks that ensure AI	create guidelines for ethical AI
	Frameworks	applications in research are free	use in research, with a focus on

		from bias and uphold the highest ethical standards.	transparency, accountability, and inclusivity.
2	Standardization of AI Research Methods	Establish standardized protocols for integrating AI into research across various fields.	Create cross-disciplinary committees to develop and disseminate best practices, ensuring consistency in AI applications in research.
3	Enhancing AI Interpretability	Improve the interpretability of AI models used in research, making it easier for researchers to understand and trust AI-generated results.	Invest in the development of explainable AI (XAI) techniques that provide clear, human-readable explanations of AI decisions.
4	Expanding Access to AI Resources	Democratize access to AI tools and computational resources, enabling all researchers to utilize AI in their work.	Develop cloud-based platforms and open-source tools that provide scalable AI resources to researchers regardless of their institutional affiliation.
5	Cross-Disciplinary AI Research Initiatives	Foster collaboration between disciplines to leverage AI in exploring complex, multifaceted research questions.	Create interdisciplinary research centers and funding programs focused on AI-driven exploratory research, encouraging collaboration between scientists, engineers, and social scientists.
6	Real-Time Data Analytics	Integrate AI into empirical research for real-time data analysis, allowing for dynamic adjustments in research methodologies.	Develop AI algorithms capable of processing and analyzing live data streams, enabling real-time decision-making in research studies.

By addressing these research gaps and pursuing these agendas, the integration of AI into experimental, empirical, and exploratory research can be optimized, leading to more robust, ethical, and innovative scientific discoveries in the AI era.

5. IMPORTANCE OF REDEFINING RESEARCH METHODOLOGIES IN THE ERA OF AI TECHNOLOGY :

The rapid advancement of Artificial Intelligence (AI) technology has revolutionized many aspects of society, including how research is conducted. Traditional research methodologies, while still valuable, often fall short in leveraging the full potential of AI [2]. Therefore, there is a critical need to redefine research methodologies to fully integrate AI technology, enhancing the rigor, efficiency, and scope of research across various fields.

(1) Harnessing the Power of Big Data:

AI technology enables the processing and analysis of vast amounts of data far beyond human capabilities. Traditional research methodologies often rely on limited datasets due to constraints in time, resources, and processing power. By redefining research methods to incorporate AI, researchers can harness big data, uncovering patterns and insights that were previously inaccessible. This shift is particularly crucial in fields like genomics, climate science, and social sciences, where the volume of data generated is exponentially growing.

(2) Improving Efficiency and Speed:

AI can automate various aspects of the research process, from data collection and analysis to hypothesis generation and experimental design. Traditional research methods can be time-consuming and labour-intensive, often taking years to complete a single study. By integrating AI, research can be conducted more quickly and efficiently, allowing for faster iterations and the ability to tackle more complex problems in a shorter time frame. This is particularly important in areas like drug discovery and material science, where speed can lead to significant real-world impacts.

(3) Enhancing Accuracy and Precision:

AI algorithms, particularly those based on machine learning, can analyze data with a level of accuracy and precision that surpasses traditional methods. For example, in medical research, AI can identify subtle patterns in imaging data that might be missed by human researchers, leading to earlier and more accurate diagnoses. Redefining research methodologies to incorporate AI ensures that studies are more reliable, with results that can be replicated and validated with greater confidence.

(4) Expanding Research Capabilities:

AI opens up new avenues of research that were previously thought to be impossible. For example, AI-driven simulations and modeling can explore scenarios that are difficult or unethical to test in the real world. In fields like physics and economics, AI can create complex models that simulate environments and predict outcomes with high accuracy. By redefining research methodologies to include these capabilities, researchers can explore new frontiers of knowledge.

(5) Addressing Ethical and Bias Issues;

While AI offers many benefits, it also introduces new challenges, particularly regarding ethics and bias. Traditional research methods may not adequately address the biases inherent in AI algorithms, leading to skewed results. Redefining research methodologies to include rigorous checks for bias and ethical considerations ensures that AI is used responsibly. This includes developing standards for transparency, accountability, and fairness in AI-driven research.

(6) Promoting Interdisciplinary Collaboration:

AI is inherently interdisciplinary, combining elements of computer science, mathematics, statistics, and domain-specific knowledge. Redefining research methodologies to embrace AI encourages collaboration across disciplines, leading to more innovative and comprehensive research. For instance, AI's role in integrating diverse datasets from biology, chemistry, and physics can lead to groundbreaking discoveries in systems biology and materials science.

(7) Facilitating Real-Time Research:

Al's ability to process data in real-time offers a significant advantage in fields where conditions can change rapidly, such as public health and environmental science. Traditional research methods often involve long delays between data collection and analysis, but AI allows for real-time monitoring and adjustment of research strategies. This capability is crucial in responding to emerging crises, such as pandemics or natural disasters, where timely research can save lives.

(8) Driving Innovation in Methodology:

The integration of AI into research is not just about applying new tools to old methods but about fundamentally rethinking how research is conducted. AI challenges researchers to develop new methodologies that are better suited to the complexities and scale of modern scientific problems. This innovation in methodology can lead to more creative and effective research approaches, pushing the boundaries of what is possible in science and technology.

Thus, Redefining research methodologies in the AI era is not just a technological imperative but a strategic one. It enables researchers to fully leverage the power of AI, enhancing the accuracy, efficiency, and impact of their work. Moreover, it ensures that research methodologies remain relevant and effective in addressing the complex challenges of the modern world. By embracing AI and redefining research methodologies accordingly, the scientific community can unlock new levels of discovery and innovation, leading to advancements that benefit society as a whole.

6. OBJECTIVES OF THE STUDY:

6.1 Objectives of the Study:

- (1) To review the use of AI in major research methods to know the current status, desired status, research gap, and various research agendas.
- (2) To propose the procedure of carrying out Experimental Research using AI and Format of writing Scholarly Article using such research.
- (3) To propose the procedure of carrying out Empirical Research using AI and Format of writing Scholarly Article using such research.
- (4) To propose the procedure of carrying out Empirical Research using AI and Format of writing Scholarly Article using such research.
- (5) To analyse the advantages, benefits, constraints, and disadvantages of doing experimental, empirical, and exploratory research using AI using ABCD analysis framework.

- (6) To compare the findings of ABCD analysis across experimental, empirical, and exploratory research using AI.
- (7) To evaluate the impact of Redefining Research Methods on AI Technology-based Research Methodologies.
- (8) To interpret the Implications of Redefining Experimental, Empirical, and Exploratory Research in the Era of AI Technology.
- (9) To provide suitable Suggestions for further research based on the findings of redefining experimental, empirical, and exploratory research in the AI era.

6.2 Significance of the Study:

The significance of conducting scholarly research on the conceptual policy paper titled "Redefining Experimental, Empirical, and Exploratory Research in AI Era" lies in its potential to revolutionize the way research is conducted in the rapidly evolving landscape of AI technology. By thoroughly reviewing the use of AI in existing research methodologies, this study aims to bridge critical gaps, propose innovative procedures, and establish standardized formats for conducting and documenting research in the AI era. The analysis and comparison of advantages, benefits, constraints, and disadvantages across different research methods using the ABCD framework will provide valuable insights into optimizing research practices. Additionally, the study's evaluation of the impact of redefined research methods on AI-driven methodologies will contribute to the development of more effective and efficient research processes, ultimately guiding future research agendas and fostering advancements in both theory and practice within the realm of AI-based research.

7. METHODOLOGY:

The Exploratory research method involves collecting information through keyword search techniques across platforms like Google Search Engine, Google Scholar Search Engine, and AI-driven GPT multilanguage search engines. This method aims to gather diverse perspectives and data from a wide range of sources to explore a research topic in-depth. The collected information is then subjected to rigorous analysis using research skills, including comparison of different findings, evaluation of their relevance and reliability, and interpretation to derive insights. By employing suitable frameworks, such as ABCD analysis or stakeholder analysis, this approach enables the creation of new knowledge and offers valuable insights into the research problem [41].

8. EXPERIMENTAL RESEARCH USING AI:

8.1 Procedure of Experimental Research using AI:

Experimental research is a fundamental approach in scientific inquiry, where researchers manipulate one or more variables to determine their effects on other variables, thereby establishing cause-and-effect relationships. In the era of Artificial Intelligence (AI), the procedures of experimental research have evolved, leveraging AI's capabilities to enhance precision, efficiency, and scalability. Here is a detailed description of the procedure for conducting experimental research using AI technology:

(1) Problem Identification and Hypothesis Formulation:

- (i) **Identifying the Research Problem**: The initial step involves identifying a research problem or question that can be explored through experimental methods. AI can assist in this process by analyzing large datasets to uncover patterns, anomalies, or trends that may indicate a researchable problem (Goodfellow, Bengio, & Courville, 2016 [42]).
- (ii) **Formulating the Hypothesis**: Based on the research problem, a hypothesis is formulated that predicts the expected outcome of the experiment. AI tools can provide insights from data analysis, helping researchers generate more accurate and testable hypotheses (Russell & Norvig, 2020 [43]).

(2) Experimental Design:

- (i) Variable Selection: Researchers must identify the independent variables (those manipulated) and dependent variables (those measured). AI can analyze historical data to determine which variables are most likely to influence outcomes, thereby optimizing the experimental design (Bishop, 2006 [44]).
- (ii) **Group Assignment**: Participants or subjects in the experiment are assigned to different groups (e.g., control and experimental groups). AI algorithms can ensure random assignment,

- minimizing bias and ensuring the comparability of groups (Hinton, Osindero, & Teh, 2006 [45]).
- (iii) **Design of Experiment (DOE)**: AI can simulate various experimental designs, helping researchers choose the most effective setup that accounts for complex interactions between variables (Mitchell, 1997 [46]).

(3) Data Collection:

- (i) **Automated Data Gathering**: AI-driven tools can automate the process of data collection through sensors, IoT devices, or software applications, enabling real-time data acquisition with high accuracy (Goodfellow et al., 2016 [42]).
- (ii) **Preprocessing Data**: Before analysis, raw data must be cleaned and processed. AI techniques can be employed to handle missing data, normalize datasets, and detect outliers, ensuring that the data is ready for analysis (Russell & Norvig, 2020 [43]).

(4) Execution of Experiment:

- (i) **Real-Time Monitoring and Adjustment**: AI can monitor the experiment in real-time, making necessary adjustments based on the data being collected. This dynamic approach allows for optimization of experimental conditions as the study progresses (Bishop, 2006 [44]).
- (ii) **Automation**: AI systems, such as robotics, can automate experimental procedures, ensuring precision and consistency, and reducing the potential for human error (Mitchell, 1997 [46]).

(5) Data Analysis:

- (i) **Statistical Analysis**: After the experiment is completed, the collected data is analyzed using AI-powered statistical tools. These tools can handle complex data analysis tasks, such as regression analysis, ANOVA, or multivariate analysis, with greater speed and accuracy than traditional methods (Hinton et al., 2006 [45]).
- (ii) Pattern Recognition and Machine Learning: AI, particularly machine learning algorithms, can identify hidden patterns in the data, offering new insights and contributing to a deeper understanding of the experimental results (Goodfellow et al., 2016 [42]).
- (iii) **Predictive Modeling**: AI can be used to develop predictive models based on the experimental data, enabling researchers to forecast outcomes under various scenarios (Bishop, 2006 [44]).

(6) Interpretation of Results:

- (i) Hypothesis Testing: The analyzed data is used to test the hypothesis. AI can assist in interpreting complex datasets and understanding the implications of the findings, ensuring that the results are statistically significant (Russell & Norvig, 2020 [43]).
- (ii) **Visualization**: AI tools can generate sophisticated visualizations, such as heat maps, 3D graphs, and interactive models, to help researchers and stakeholders interpret and communicate the findings effectively (Mitchell, 1997 [46]).

(7) Validation and Replication:

- (i) Cross-Validation: AI can perform cross-validation by applying the experimental model to different datasets or through simulation, ensuring the reliability and generalizability of the findings (Goodfellow et al., 2016 [42]).
- (ii) **Replication of Experiments**: AI enables the automation of replication studies under varied conditions or with different samples, which is crucial for validating the results and confirming their robustness (Bishop, 2006 [44]).

(8) Reporting and Documentation:

- (i) **Automated Reporting**: AI can streamline the process of report generation by automatically summarizing the findings, generating visual aids, and formatting the report according to specific journal requirements (Russell & Norvig, 2020 [43]).
- (ii) **Ethical Considerations**: Throughout the process, AI can ensure adherence to ethical guidelines, such as maintaining data privacy and avoiding biases in both design and interpretation (Mitchell, 1997 [46]).

(9) Publication and Dissemination:

(i) **Selecting Journals**: AI tools can assist in identifying the most appropriate journals for publication based on the research's focus and impact, increasing the chances of acceptance (Hinton et al., 2006 [45]).

(ii) **Broad Dissemination**: AI-driven platforms can facilitate the widespread dissemination of research findings through academic networks, social media, and open-access repositories, maximizing the impact and reach of the study (Goodfellow et al., 2016 [42]).

Thus, AI technology significantly enhances the experimental research process by improving the precision, efficiency, and scalability of every stage, from hypothesis formulation to publication. As AI continues to evolve, its integration into experimental research will likely lead to even greater innovations and discoveries in various scientific fields.

8.2 Format of Scholarly Article of Experimental Research using AI:

A scholarly article on experimental research using AI technology typically adheres to a structured format that includes several key sections. Each section plays a crucial role in presenting the research systematically and clearly. Here is a detailed description of the format:

(1) Title:

The title should be concise, descriptive, and reflect the main focus of the research. It should include key terms related to experimental research and AI technology.

Example: "Optimizing Experimental Research Methods with AI Technology: A Case Study on Predictive Modeling and Data Analysis."

(2) Abstract:

The abstract provides a brief summary of the research, including the research problem, methodology, key results, and conclusions. It typically ranges from 150 to 250 words.

Components:

- o Research Problem
- o Objectives
- o Methodology (including AI techniques used)
- Key Findings
- o Conclusions

(3) Keywords:

Keywords help in indexing and searching for the article. They should be specific to the research and reflect the core topics.

Example: Al Technology, Experimental Research, Machine Learning, Predictive Modeling, Data Analysis.

(4) Introduction:

The introduction sets the context for the research. It includes the research problem, background information, literature review, and the study's objectives.

Components:

- o Background and Rationale
- o Literature Review
- o Research Questions or Hypotheses
- Objectives and Significance

This section details the experimental design, AI techniques used, data collection methods, and analytical procedures.

(5) Methodology:

This section explains the experimental method used along with the experimental design, AI techniques employed, data collection methods, and data analysis frameworks used, etc.

Components:

- o **Experimental Design**: Description of the experimental setup, variables, and controls.
- o **AI Techniques**: Specific AI methods (e.g., machine learning algorithms, neural networks) employed.
- o Data Collection: Sources of data and methods of gathering it.
 - o Data Analysis: Techniques used for analyzing the data, including any AI-based tools

(6) Results:

The results section presents the findings of the experiment, including statistical analyses and data visualizations. It should be clear and objective, without interpretation.

Components:

Data Presentation (tables, graphs, charts)

Statistical Analysis

(7) Discussion:

The discussion interprets the results, explaining their implications, relevance, and how they compare with previous research. It also addresses any limitations and potential biases.

Components:

- o Interpretation of Findings
- Comparison with Existing Literature
- o Implications for Theory and Practice
- Limitations and Future Research Directions

(8) Conclusion:

The conclusion summarizes the key findings, their significance, and provides recommendations based on the research.

Components:

- Summary of Key Findings
- Implications for Future Research
- Practical Recommendations

(9) References:

This section lists all the sources cited in the article, formatted according to a specific citation style (e.g., APA, MLA).

(10) Acknowledgements:

This optional section acknowledges any assistance or funding received during the research.

Components:

- Funding Sources
- o Contributions from Colleagues or Institutions

(11) Appendices:

Appendices include supplementary materials such as raw data, detailed methodologies, or additional analyses that are too extensive to include in the main text.

Components:

- o Raw Data Tables
- Detailed Methodological Descriptions
- Additional Figures or Charts

Thus, the format of a scholarly article on experimental research using AI technology ensures a comprehensive presentation of research findings. By following a structured format, researchers can effectively communicate their work, facilitating the replication of experiments and the advancement of knowledge in the field.

9. EMPIRICAL RESEARCH USING AI:

9.1 Procedure of Empirical Research using AI:

Empirical research involves collecting and analyzing data to gain insights into specific phenomena. When incorporating AI technology into empirical research, the procedure follows several key steps, each leveraging AI tools to enhance data collection, analysis, and interpretation. Here's a detailed description of the procedure, including citations.

(1) Formulating Research Questions and Hypotheses:

Begin by clearly defining the research questions and hypotheses. These should be specific, measurable, and relevant to the phenomena being studied. AI technology can assist in identifying research gaps and formulating hypotheses by analyzing existing literature and trends.

AI Application: Utilize AI tools such as natural language processing (NLP) to review and synthesize existing research and identify potential research questions and hypotheses (Manning & Schütze, 1999 [47]).

(2) Designing the Study:

Develop a research design that outlines the methods for data collection, including sampling strategies, variables, and data sources. The design should ensure that the study can effectively address the research questions.

AI Application: AI algorithms can help in designing experiments by simulating various scenarios and predicting outcomes based on different variables (Lim et al., 2020 [48]).

(3) Data Collection:

Collect data through various methods such as surveys, experiments, observations, or secondary data sources. The quality and accuracy of data collection are crucial for valid results.

AI Application: Implement AI technologies to automate data collection processes, such as using machine learning models for automated survey analysis, image recognition for observational data, or web scraping tools for secondary data (Whang, et al., 2023 [49]).

(4) Data Preprocessing:

Prepare the collected data for analysis by cleaning, transforming, and organizing it. This step involves removing inconsistencies, handling missing values, and normalizing data.

AI Application: Use AI-based tools for data preprocessing, such as algorithms for anomaly detection, data imputation, and feature selection (Tibshirani, 2011 [50]).

(5) Data Analysis:

Analyze the preprocessed data to test hypotheses and draw conclusions. This involves applying statistical methods and interpreting the results in the context of the research questions.

AI Application: Employ AI techniques like machine learning algorithms and neural networks to analyze complex datasets, uncover patterns, and generate predictive models (LeCun, Bengio, & Hinton, 2015 [51]).

(6) Interpreting Results:

Interpret the findings of the data analysis in relation to the research questions and hypotheses. Discuss how the results contribute to understanding the phenomenon under study.

AI Application: Use AI tools for visualization and interpretation of results, such as advanced data visualization software and AI-driven analytics platforms (Wickham, 2016 [52]).

(7) Drawing Conclusions:

Summarize the key findings of the study and their implications. Provide recommendations based on the results and suggest areas for further research.

AI Application: AI can aid in synthesizing results from multiple studies and generating comprehensive conclusions through meta-analysis techniques (Blei et al., 2017 [53]).

(8) Reporting and Dissemination:

Prepare a detailed report of the research process, findings, and conclusions. Share the results with the academic community through publications, presentations, and other dissemination methods.

AI Application: Utilize AI tools for drafting and formatting research papers, creating presentations, and disseminating findings through automated content generation and distribution platforms (Magerman, D. M. (1995). [54]).

9.2 Format of Scholarly Article of Empirical Research using AI:

Empirical research using AI technology follows a structured format that reflects the integration of advanced computational methods into traditional research methodologies. This format ensures that the use of AI is systematically documented and its impact on the research outcomes is clearly communicated. Here's a detailed description of the format for such scholarly articles, including citations.

(1) Title:

The title should clearly reflect the focus of the empirical research and indicate the use of AI technology. It should be concise and informative, capturing the essence of the study.

Example: "Leveraging AI Technology for Enhanced Predictive Analytics in Healthcare: An Empirical Study"

(2) Abstract:

A brief summary of the research, including the objectives, methods, results, and conclusions. The abstract should highlight how AI technology was employed in the study and its significance.

Example: "This study investigates the application of machine learning algorithms to improve predictive analytics in healthcare. Using AI-based models, we analyzed patient data to forecast outcomes with higher accuracy compared to traditional methods. The findings demonstrate significant improvements in predictive performance, underscoring the transformative potential of AI in healthcare analytics."

(3) Introduction:

Introduces the research problem, objectives, and significance. It provides context for the study and explains the rationale for using AI technology. The introduction should review relevant literature and identify the research gap.

Example: "Predictive analytics in healthcare has traditionally relied on statistical methods with limited accuracy. Recent advancements in AI technology offer promising alternatives. This study aims to explore how machine learning can enhance predictive models in healthcare by comparing its performance with conventional methods."

(4) Literature Review:

A comprehensive review of existing research related to the study. It discusses previous empirical studies that utilized AI technology and highlights their findings and limitations. This section establishes the theoretical framework and justifies the research approach.

Example: "Previous research has demonstrated the efficacy of AI in various domains, including finance and marketing (Kroll et al., 2021) [55]. However, its application in healthcare predictive analytics remains underexplored. Studies by Xiong, et al. (2023) [56] indicate potential improvements in prediction accuracy using machine learning techniques."

(5) Methodology:

Detailed account of the research design, including data collection methods, AI technologies used, and analytical procedures. This section should describe the AI models and algorithms employed, data sources, and how the data was processed and analyzed.

Example: "We employed a supervised learning approach using a dataset of 10,000 patient records. The data was preprocessed and split into training and test sets. Several machine learning algorithms, including decision trees and neural networks, were applied to predict patient outcomes. Model performance was evaluated using metrics such as accuracy, precision, and recall."

(6) Results:

Presentation of the research findings, including statistical analyses and performance metrics of the AI models. This section should include tables, graphs, and figures to illustrate the results clearly.

Example: "The neural network model achieved an accuracy of 85%, significantly outperforming the traditional regression model with an accuracy of 72%. Figure 1 shows the ROC curve for the neural network model, indicating superior performance in classification tasks."

(7) Discussion:

Interpretation of the results in relation to the research questions and hypotheses. Discuss the implications of the findings, how AI technology influenced the results, and compare the outcomes with previous studies.

Example: "The superior performance of the AI models demonstrates the potential for machine learning to revolutionize predictive analytics in healthcare. Our results align with findings by Ho, et al. (2021) [57], who also observed enhanced accuracy using AI techniques."

(8) Conclusion:

Summarizes the main findings, contributions to the field, and practical implications. It should also highlight the limitations of the study and suggest directions for future research.

Example: "This study confirms that AI technology can significantly enhance predictive analytics in healthcare. Future research should explore the application of deep learning techniques and investigate their scalability across different healthcare settings."

(9) References:

A comprehensive list of all sources cited in the article, formatted according to APA style. This section provides the basis for the research and allows readers to locate the sources used.

Example: "References should include all relevant studies, articles, and books cited throughout the paper."

(10) Appendices (if applicable):

Supplementary materials, such as additional data, code used for AI algorithms, or detailed methodological descriptions. Appendices provide further details that support the main text but are too extensive to include within the main sections.

Example: "Appendix A includes the full dataset used in the study, while Appendix B provides the code for the machine learning models implemented."

10. EXPLORATORY RESEARCH USING AI:

10.1 Procedure of Exploratory Research using AI:

Exploratory research aims to investigate phenomena where there is limited prior knowledge or where new approaches can be applied. In the context of AI technology, exploratory research involves leveraging advanced computational techniques to uncover insights, patterns, and relationships in data that were previously unknown. The procedure for conducting exploratory research using AI technology can be outlined as follows:

(1) Formulating Research Questions and Objectives:

Start by defining broad research questions and objectives that address the areas of interest. These questions should be flexible to accommodate new insights gained during the research process.

Example: "How can AI be used to identify emerging trends in social media data?"

(2) Literature Review and Technology Scoping:

Conduct a literature review to understand the current state of knowledge and existing methodologies. Identify relevant AI technologies and techniques that can be applied to the research questions.

Example: "Review of recent studies on AI applications in data mining and natural language processing (NLP) provides insights into the technologies that can be utilized for trend analysis (Mahadevkar et al., 2024 [58]; Păvăloaia & Necula (2023). [59]).

(3) Data Collection and Preparation;

Gather data from various sources relevant to the research questions. This data can be structured (e.g., databases) or unstructured (e.g., text from social media). Preprocess the data to clean, normalize, and transform it into a format suitable for AI analysis.

Example: Data collection involved scraping social media platforms for posts and comments related to emerging topics. The data was then cleaned and tokenized for analysis using NLP techniques (Hauschild (2023). [60]).

(4) Selecting AI Tools and Techniques:

Choose appropriate AI algorithms and tools for analyzing the data. Techniques such as clustering, topic modeling, and dimensionality reduction are commonly used in exploratory research to identify patterns and trends.

Example: For topic modeling, Latent Dirichlet Allocation (LDA) was used to extract themes from the text data, while k-means clustering was applied to group similar posts (Blei et al., 2003 [61]; MacQueen, 1967 [62]).

(5) Applying AI Algorithms:

Implement the selected AI algorithms to analyze the data. This step involves running the algorithms, tuning parameters, and iterating to refine results. The aim is to uncover hidden patterns and generate new insights.

Example: The LDA algorithm identified five major themes in the social media data, revealing trends in user sentiment and emerging topics (Blei et al., 2003 [61]).

(6) Interpreting Results:

Analyze the results produced by AI algorithms to interpret their significance. Look for novel insights and patterns that address the initial research questions. Visualize the results using graphs and charts to aid in interpretation.

Example: The clustering analysis highlighted three distinct user groups with varying sentiments about emerging topics. Visualization of these clusters provided a clearer understanding of user behaviour patterns (Kohonen, 2013 [63]).

(7) Validation and Refinement:

Validate the findings by comparing them with known benchmarks or using additional data sources. Refine the AI models and algorithms as necessary to improve accuracy and relevance.

Example: The findings were validated by cross-referencing with historical trend data and refining the LDA model to enhance topic coherence (Griffiths & Steyvers, 2004 [64]).

(8) Reporting and Documentation:

Document the research process, methodologies, and findings in a detailed report. Include discussions on the implications of the results, limitations of the study, and suggestions for future research.

Example: The final report documented the AI methods used, the patterns identified, and their implications for understanding social media trends. Limitations included data bias and the need for further validation (Mahadevkar, (2024). [58]).

10.2 Format of Scholarly Article of Exploratory Research using AI:

A scholarly article on exploratory research using AI technology typically adheres to a structured format that includes several key sections. Each section serves a specific purpose, ensuring clarity and rigor in presenting the research findings. Below is a detailed description of the format:

(1) Title:

The title should be concise and descriptive, reflecting the core focus of the research and its use of AI technology.

Example: Exploring Emerging Trends in Social Media Using AI-Driven Topic Modeling and Clustering Techniques.

(2) Abstract:

This section provides a brief summary of the research, including the problem addressed, the AI methods used, key findings, and the significance of the study. It typically ranges from 150 to 250 words.

Example: This study explores emerging trends in social media by applying AI-driven topic modeling and clustering techniques. The research utilizes Latent Dirichlet Allocation (LDA) and k-means clustering to identify and analyze trends in user-generated content. Key findings reveal distinct patterns in user engagement and topic evolution, offering new insights into social media dynamics.

(3) Introduction:

The introduction outlines the research problem, objectives, and the rationale for using AI technology. It provides background information and reviews relevant literature to establish the context and significance of the study.

Example: In the age of big data, social media platforms generate vast amounts of user content daily. Understanding emerging trends within this data is crucial for businesses and researchers. This study employs AI techniques such as topic modeling and clustering to explore these trends, building on existing research in data mining and natural language processing (Kasula (2016). [65]).

(4) Literature Review:

This section reviews existing research related to the use of AI in exploratory analysis. It discusses previous methodologies, findings, and identifies gaps that the current research aims to address.

Example: Recent advancements in AI, particularly in natural language processing and unsupervised learning, have opened new avenues for exploratory research (Lu, Y. (2019). [66]). However, there remains a gap in applying these techniques to real-time social media data analysis. This study aims to fill this gap by integrating LDA and k-means clustering for comprehensive trend analysis.

(5) Methodology:

This section details the AI techniques and tools used, the data collection process, and the methods for data preprocessing. It explains how the research was conducted, including algorithm selection, parameter tuning, and validation techniques.

Example: The study utilizes Latent Dirichlet Allocation (LDA) for topic modeling and k-means clustering for data segmentation. Data was collected from Twitter using the Twitter API and preprocessed to remove stopwords and perform tokenization. The LDA model was trained on a corpus of 10,000 tweets, and clustering was performed using Euclidean distance metrics.

(6) Results:

Present the findings of the research, including the results from the AI algorithms. Use tables, graphs, and charts to illustrate key patterns and trends identified through the analysis.

Example: The LDA model identified five main topics, including technology, politics, health, entertainment, and sports. Clustering analysis revealed three distinct user groups with varying engagement levels across these topics. Figures 1 and 2 display the distribution of topics and user clusters.

(7) Discussion:

Interpret the results in the context of the research questions and objectives. Discuss the implications of the findings, how they contribute to existing knowledge, and any unexpected results. Address limitations and potential sources of bias.

Example: The findings indicate significant variations in user engagement with different topics, with technology and politics being the most discussed. These results contribute to our understanding of social media dynamics and highlight the effectiveness of AI techniques in trend analysis. Limitations include potential biases in data sampling and the generalizability of the results.

(8) Conclusion:

Summarize the main findings and their implications. Suggest potential applications of the research and propose directions for future studies.

Example: This research demonstrates the potential of AI-driven topic modeling and clustering for exploring social media trends. Future studies could expand on this work by incorporating additional AI techniques or analyzing data from multiple social media platforms.

(9) References:

List all the sources cited in the article, formatted according to the APA style. This section includes books, journal articles, and other relevant materials.

(10) Appendices (if applicable):

Include any supplementary material such as raw data, detailed tables, or additional figures that support the research but are too extensive to include in the main body of the article.

By following this format, researchers can effectively present exploratory research using AI technology, ensuring clarity and comprehensiveness in their scholarly articles.

11. ABCD ANALYSIS:

The ABCD analysis framework for innovation in research methods using AI provides a structured approach to evaluate the impact of artificial intelligence on experimental, empirical, and exploratory research. It assesses four key dimensions: Advantages of AI, such as enhanced data processing, automation, and predictive accuracy; Benefits, including improved efficiency, scalability, and novel insights from complex datasets; Constraints, such as ethical concerns, data privacy issues, and the potential for bias in AI algorithms; and Disadvantages, like over-reliance on AI and the erosion of human interpretive skills. This framework aids researchers in critically analyzing the opportunities and challenges posed by AI-driven innovations in their research methodologies [67-68]. Four types of ABCD analysis frameworks are used in practice which include: (1) ABCD Listing [69-72], (ii) ABCD Stakeholders Analysis [73-77], (iii) ABCD Factors & Elemental Analysis [78-82], and (iv) ABCD Quantitative Empirical Analysis [83-87]. In this section, ABCD Listing of various research methods in AI era is used.

11.1 Experimental Research in AI Era:

(i) Advantages:

Advantages of Redefining the Experimental Research Method Using AI Technology in the AI Era are listed in Table 3.

Table 3: Advantages of Redefining Experimental Research Method Using AI Technology in the AI Era

S. No.	Key advantage	Description	Example
1	Enhanced Precision and Accuracy	AI technology, particularly machine learning algorithms, can significantly improve the precision and accuracy of experimental research. AI can analyze vast datasets with high accuracy, reducing human error and providing more reliable results.	•
2	Automation of Data Collection and Analysis	AI technologies such as robotic systems and automated sensors streamline data collection processes, making experiments more efficient. Additionally, AI-driven tools can perform real-time data analysis, accelerating the research process.	AI-powered sensors can continuously monitor experimental conditions and collect data without human intervention, allowing researchers to focus on interpreting results.
3	Handling Large and Complex Datasets	AI excels in managing and analyzing large and complex datasets, which are increasingly	learning can analyze complex

		common in experimental research. This capability enables researchers to work with big data that traditional methods might struggle to handle.	high-dimensional imaging studies, uncovering insights that would be challenging to extract manually.
4	Improved Experimental Design	AI can assist in designing experiments by simulating different scenarios and predicting outcomes based on existing data. This helps in optimizing experimental conditions and making informed decisions about research design.	AI-driven simulations can predict the effects of varying experimental parameters, guiding researchers in setting up more effective and efficient experiments.
5	Increased Reproducibility and Validity	AI can enhance the reproducibility and validity of experiments by providing standardized procedures and reducing human biases. Automated systems ensure that experiments are conducted consistently across different trials.	AI systems can standardize data collection and processing protocols, ensuring that experimental results are reproducible and less prone to variability due to human error.
6	Real-Time Monitoring and Adaptation	AI technologies enable real-time monitoring of experimental conditions, allowing for immediate adjustments based on ongoing results. This adaptability can improve the quality and relevance of experimental outcomes.	Machine learning algorithms can analyze real-time data from experiments and adjust parameters dynamically to optimize results.
7	Enhanced Predictive Capabilities	AI models can predict experimental outcomes based on historical data and simulations. This predictive power can guide researchers in making proactive adjustments and anticipating potential challenges.	Predictive analytics can forecast the effects of different experimental conditions, helping researchers to avoid potential pitfalls and improve the design.
8	Identification of Hidden Patterns and Insights	AI algorithms are adept at uncovering hidden patterns and correlations in experimental data that might not be evident through traditional analysis methods. This can lead to new discoveries and deeper insights.	Advanced clustering and pattern recognition techniques can reveal underlying relationships in complex datasets, providing novel insights into experimental phenomena.
9	Cost and Time Efficiency	By automating data collection, analysis, and experimentation, AI can reduce the time and cost associated with experimental research. This efficiency can lead to faster research cycles and more costeffective studies.	Automated systems and AI-driven analysis reduce the need for extensive manual labour, leading to significant savings in both time and resources.
10	Cost and Time Efficiency	By automating data collection, analysis, and experimentation, AI can reduce the time and cost associated with experimental research. This efficiency can lead to faster research cycles and more costeffective studies.	Automated systems and AI-driven analysis reduce the need for extensive manual labour, leading to significant savings in both time and resources.

11	Facilitation of	AI can integrate and analyze data	AI applications in fields such
	Multidisciplinary	from diverse fields, facilitating	as bioinformatics and
	Research	multidisciplinary research. This	environmental science
		capability enables researchers to	illustrate how cross-
		conduct experiments that combine	disciplinary data integration
		insights from different domains,	can enhance experimental
		leading to more comprehensive	research.
		studies.	

(ii) Benefits:

Benefits of Redefining the Experimental Research Method Using AI Technology in the AI Era are listed in Table 4.

Table 4: Benefits of Redefining Experimental Research Method Using AI Technology in the AI Era

	Key Benefits		KVOMNIA
T 1	Enhanced Data	Description AI technologies, such as machine	Example Improved data analysis leads
	Analysis	learning algorithms and neural	to more robust and actionable
	Capabilities	networks, enable researchers to	research findings, facilitating
'	Capabilities	analyze complex datasets more	better decision-making and
		effectively. AI can identify patterns	scientific discoveries.
		and relationships that might be	selentific discoveries.
		missed using traditional statistical	
		methods, leading to deeper insights	
		and more accurate results.	
2	Increased	AI-driven automation in	Faster research cycles allow
	Efficiency and	experimental design and execution	for quicker testing of
	Speed	accelerates the research process. AI	hypotheses and more timely
	•	tools can automate repetitive tasks	publication of results,
		such as data collection, processing,	enhancing the overall
		and preliminary analysis,	productivity of research
		significantly reducing the time	efforts.
		required to complete experiments.	
3	Advanced	AI can leverage predictive analytics	Enhanced predictive
	Predictive	to forecast experimental outcomes	capabilities help in designing
1	Analytics	based on historical data and	more effective experiments,
		simulations. This capability allows	reducing the risk of failure,
		researchers to anticipate results and	and saving resources.
		optimize experimental conditions	
4 3		before actual implementation.	
	Improved	AI assists in refining experimental	More precise and well-
	Experimental	designs by simulating various	designed experiments lead to
	Design	scenarios and assessing potential	more reliable and valid results,
		outcomes. AI algorithms can suggest optimal experimental	improving the overall quality of research.
		suggest optimal experimental parameters and configurations based	of research.
		on data-driven insights.	
5 1	Real-Time Data	AI enables real-time monitoring of	Real-time adjustments
	Monitoring and	experimental conditions and	improve the accuracy of
	Adaptation	automatic adjustments based on	
	- ranpention	ongoing results. This dynamic	errors, enhancing the validity
		adaptability helps in maintaining	of research outcomes.
		optimal conditions throughout the	
		experiment.	
6	Cost Reduction	AI-driven automation and	Reduced costs make research
		optimization reduce the need for	more accessible and feasible,

7	Enhanced Reproducibility	manual labour and minimize errors, leading to cost savings in experimental research. AI tools can also optimize resource usage, further lowering costs. AI technologies standardize experimental procedures and data processing, improving reproducibility across different trials and laboratories. Automated systems ensure consistent execution of experiments.	particularly for institutions with limited budgets. Improved reproducibility strengthens the credibility of research findings and facilitates validation by independent researchers.
8	Ability to Handle Large-Scale Data	AI excels at processing and analyzing large-scale data that is increasingly common in modern experiments. Machine learning models can handle vast amounts of data efficiently, extracting meaningful insights from complex datasets.	The ability to manage and analyze big data enhances the scope and depth of experimental research, leading to more comprehensive findings.
9	Facilitation of Interdisciplinary Research	Facilitated interdisciplinary research leads to innovative solutions and a broader understanding of complex phenomena.	Facilitated interdisciplinary research leads to innovative solutions and a broader understanding of complex phenomena.
10	Enhanced Visualization and Interpretation	AI technologies offer advanced data visualization tools that help in interpreting complex experimental results. AI-generated visualizations can present data in intuitive formats, making it easier to identify trends and relationships.	Improved visualization aids in the effective communication of research findings and supports better interpretation of experimental data.

(iii) Constraints:

Constraints of Redefining the Experimental Research Method Using AI Technology in the AI Era are listed in Table 5.

Table 5: Constraints of Redefining the Experimental Research Method Using AI Technology in the AI Era

S. No.	Key constraints	Description	Example
1	High Initial	Implementing AI technology for	High costs can be a barrier for
	Costs	experimental research requires	many research institutions and
		significant upfront investment in	researchers, potentially
		hardware, software, and training.	limiting the widespread
		The costs associated with acquiring	adoption of AI in experimental
		and maintaining AI systems can be	research.
		substantial, particularly for	
		institutions with limited budgets.	
2	Data Privacy and	AI technologies often require access	Concerns about data privacy
	Security	to large amounts of data, which can	and security can hinder the
	Concerns	raise privacy and security issues.	implementation of AI
		Ensuring the protection of sensitive	technologies, especially in

		or proprietary information is critical	research involving personal or
3	Complexity of AI	but can be challenging. AI models, particularly deep	confidential data. The need for specialized skills
	Models	learning algorithms, can be highly complex and require specialized knowledge to design, implement, and interpret. This complexity can pose challenges for researchers who lack expertise in AI.	and knowledge can limit the accessibility and effective use of AI technologies in experimental research.
4	Lack of Interpretability	Many AI models, especially those based on deep learning, are often described as "black boxes" because their decision-making processes are not easily interpretable. This lack of transparency can make it difficult for researchers to understand and validate AI-driven results.	Limited interpretability can affect the credibility of research findings and hinder the ability to provide explanations or justifications for AI-based results.
5	Ethical and Bias Issues	AI systems can inadvertently perpetuate biases present in training data, leading to unfair or discriminatory outcomes. Addressing these ethical issues is crucial but can be complex.	Ethical concerns and potential biases in AI systems can impact the fairness and validity of experimental research outcomes, requiring careful management and mitigation strategies.
6	Dependence on Quality Data	The effectiveness of AI models heavily depends on the quality and quantity of data used for training. Inaccurate or insufficient data can lead to poor model performance and unreliable research results.	Ensuring high-quality data collection and management is essential but can be challenging, especially in domains where data is scarce or difficult to obtain.
7	Integration Challenges	Integrating AI technologies with existing research infrastructure and workflows can be complex. Researchers may face difficulties in adapting their experimental setups and data management practices to accommodate AI tools.	Integration challenges can lead to disruptions in research processes and require additional time and resources to address.
8	Ongoing Maintenance and Updates	AI systems require regular updates and maintenance to ensure continued performance and accuracy. Keeping AI models up-to-date with evolving data and research needs can be resource-intensive.	The need for ongoing maintenance and updates can impose additional burdens on research teams and institutions.
9	Regulatory and Compliance Issues	The use of AI in research may be subject to various regulatory and compliance requirements, depending on the jurisdiction and nature of the research. Navigating these regulations can be complex and time-consuming.	Regulatory and compliance issues can add to the administrative and operational overhead associated with implementing AI technologies in research.
10	Resistance to Change	Researchers and institutions accustomed to traditional research methods may resist adopting AI technologies due to familiarity with	Resistance to change can slow the adoption of AI technologies and hinder efforts to modernize experimental research methodologies.

	existing practices or	skepticism
'	about AI's effectiveness	•

(iv) Disadvantages:

Disadvantages of Redefining the Experimental Research Method Using AI Technology in the AI Era are listed in Table 6.

Table 6: Disadvantages of Redefining the Experimental Research Method Using AI Technology in the AI Era

AI Era	1		I
S. No.	Key	Description	Example
4	Disadvantages		
1	Over-Reliance on	Heavy dependence on AI algorithms	Over-reliance on AI may
	AI Algorithms	for designing and conducting	reduce the role of critical
		experiments may lead to a reduced	thinking and traditional
		emphasis on human expertise and intuition. This over-reliance can	methods in experimental
		undermine the nuanced	research, potentially leading to less innovative and diverse
		understanding that human	research approaches.
		researchers bring to experimental	research approaches.
		design.	
2	Limited	AI models are often trained on	The findings from AI-driven
_	Generalizability	specific datasets, which may not	experiments may not be easily
	of AI Models	generalize well to different contexts	generalizable to broader or
		or populations. This can limit the	different settings, impacting
		applicability of experimental results	the robustness of research
		obtained through AI.	conclusions.
3	Risk of	The complex nature of AI models	Misinterpretation of AI-
	Misinterpretation	can lead to difficulties in	generated results can lead to
		interpreting results accurately.	incorrect conclusions and
		Misinterpretation of AI outputs can	impact the validity of
		occur if researchers do not fully	experimental research.
		understand the underlying	
	D	algorithms or data processing.	D:
4	Potential for	AI systems can perpetuate and even	Bias in AI models can skew
	Reinforcing	exacerbate existing biases in data. If	experimental results and
	Biases	not properly addressed, these biases can influence experimental	contribute to unfair or
		can influence experimental outcomes and reinforce systemic	inaccurate research findings, requiring careful management
		inequalities.	and mitigation.
5	Complexity of AI	Integrating AI technology into	The complexity of AI
	Integration	experimental research can be	integration may create barriers
		complex and may require	for researchers and
		significant changes to existing	institutions, potentially
		methodologies and infrastructure.	leading to delays and
		This complexity can pose	increased costs.
		challenges for researchers who are	
		not well-versed in AI.	
6	Ethical and Legal	The use of AI in research raises	Ethical and legal issues
	Issues	various ethical and legal concerns,	associated with AI can pose
		including data privacy, consent, and	risks to research integrity and
		accountability. Navigating these	may require additional
		issues can be challenging and may	resources to address
		complicate the research process.	compliance and ethical
			considerations.

7	Limited Human Oversight	Heavy reliance on AI may reduce human oversight in the experimental process. Automated systems may make decisions or recommendations without adequate human review, potentially overlooking critical factors.	Reduced human oversight can lead to errors or omissions in the experimental process, impacting the quality and reliability of research.
8	Maintenance and Upkeep Challenges	AI systems require ongoing maintenance, updates, and fine-tuning to ensure continued effectiveness. Managing these aspects can be resource-intensive and may demand specialized expertise.	The need for continuous maintenance and updates can impose additional burdens on research teams and institutions.
9	Interdisciplinary Skill Requirements	Effective use of AI in experimental research requires interdisciplinary skills, including expertise in both the domain of study and AI technology. Developing and maintaining these skills can be demanding.	The need for interdisciplinary skills can limit the accessibility of AI technology for researchers who lack expertise in either area, potentially creating skill gaps.
10	Potential for Data Overload	AI technologies can generate and process vast amounts of data, which may overwhelm traditional data analysis methods. Researchers may struggle to manage and make sense of large datasets generated by AI.	Data overload can complicate data analysis and interpretation, potentially leading to difficulties in extracting meaningful insights from AI-driven experiments.

11.2 Empirical Research in AI Era:

(i) Advantages:

Advantages of Redefining the Empirical Research Method Using AI Technology in the AI Era are listed in Table 7.

Table 7: Advantages of Redefining the Empirical Research Method Using AI Technology in the AI Era

S. No.	Key advantage	Description	Example
1	Enhanced Data	AI technology can process vast	AI enables the analysis of big
	Processing	amounts of data quickly and	data, improving the depth and
	Capabilities	accurately, allowing researchers to	breadth of empirical research
		handle large datasets that would be	and allowing for the discovery
		impractical using traditional	of patterns and insights that
		methods. This capability leads to	may not be visible through
		more comprehensive and detailed	manual analysis.
		empirical studies.	
2	Improved	AI algorithms can reduce human	The use of AI ensures more
	Accuracy and	errors in data collection, analysis,	accurate and consistent results,
	Precision	and interpretation. This precision	which strengthens the
		enhances the reliability and validity	empirical research's credibility
		of empirical research findings.	and reproducibility.
3	Automation of	AI can automate repetitive tasks	Automation leads to increased
	Repetitive Tasks	such as data entry, coding, and	efficiency and allows
		preliminary analysis, freeing up	researchers to dedicate more
		researchers to focus on more	time to hypothesis
		complex and creative aspects of	development, theory building,
		empirical research.	and interpretation of results.

4	Real-Time Data Analysis	Al technologies can analyze data in real-time, providing immediate feedback and enabling researchers to adjust their studies as needed. This capability is particularly beneficial in longitudinal or dynamic studies.	Real-time analysis allows for more adaptive and responsive research designs, leading to more timely and relevant empirical insights.
5	Increased Research Scalability	AI allows empirical research to be scaled up significantly, making it possible to study larger populations or more extensive datasets without a proportional increase in resources.	Scalability enables more extensive and generalizable studies, which can contribute to broader and more impactful research findings.
6	Integration of Multimodal Data	AI can integrate and analyze various types of data, including text, images, audio, and video, within a single empirical study. This multimodal approach provides a more holistic understanding of research phenomena.	The ability to analyze diverse data types enhances the richness of empirical research and allows for more nuanced and comprehensive interpretations.
7	Identification of Hidden Patterns	AI technologies, such as machine learning, can identify hidden patterns, correlations, and trends in data that may not be apparent through traditional empirical methods.	The discovery of hidden patterns can lead to novel insights and the generation of new hypotheses, advancing the field of study.
8	Personalization of Research Findings	AI can tailor research findings to specific subgroups or individuals by analyzing data at a granular level. This personalization can make empirical research more relevant and applicable to diverse populations.	Personalized research findings can improve the applicability and impact of empirical studies in real-world settings, making the research more actionable.
9	Enhanced Predictive Modeling	AI enables advanced predictive modeling techniques that can forecast outcomes based on empirical data. These models can be used to test hypotheses and predict future trends with greater accuracy.	Enhanced predictive capabilities allow researchers to anticipate changes and make informed decisions, thereby improving the practical utility of empirical research.
10	Facilitation of Interdisciplinary Research	AI supports the integration of methods and data from various disciplines, enabling more comprehensive and interdisciplinary empirical research.	Interdisciplinary research can lead to more innovative and holistic solutions to complex problems, broadening the scope and impact of empirical research.

(ii) Benefits:

Benefits of Redefining the Empirical Research Method Using AI Technology in the AI Era are listed in Table 8.

Table 8: Benefits of Redefining the Empirical Research Method Using AI Technology in the AI Era

S. No.	Key Benefits	Description	Example
1	Increased	AI technology can automate various	Researchers can complete
	Research	stages of the research process, such	studies faster, allowing for
	Efficiency	as data collection, cleaning, and	more rapid dissemination of

		preliminary analysis, significantly	findings and the ability to
		reducing the time and effort required	undertake more research
		to conduct empirical research.	projects in less time.
2	Enhanced Data	AI algorithms can minimize human	Improved accuracy
_	Accuracy	errors in data processing and	strengthens the validity of
	•	analysis, leading to more precise	research results, increasing the
		and reliable empirical research	credibility of studies and
		outcomes.	reducing the likelihood of
			erroneous conclusions.
3	Advanced	AI enables the use of sophisticated	These advanced capabilities
	Analytical	analytical techniques, such as	lead to deeper insights and a
	Capabilities	machine learning and deep learning,	more comprehensive
		which can uncover complex patterns	understanding of research phenomena.
		and relationships within data that traditional methods might miss.	phenomena.
4	Real-Time Data	AI can analyze data as it is collected,	Real-time analysis enables
'	Analysis	allowing researchers to obtain real-	more dynamic and flexible
	Timiy 515	time insights and make adjustments	research designs, which can
		to their studies as needed.	adapt to changing
			circumstances and emerging
			trends.
5	Scalability of	AI allows researchers to scale their	Greater scalability leads to
	Research	studies to include larger datasets or	more generalizable findings
		more extensive populations without	and the ability to study
		a corresponding increase in resources.	phenomena across broader contexts.
6	Integration of	AI technology can integrate and	The integration of diverse data
O	Diverse Data	analyze data from various sources,	types enhances the richness of
	Sources	including structured and	empirical studies, leading to
		unstructured data, providing a more	more nuanced and
		holistic view of the research	multifaceted conclusions.
		problem.	
7	Improved	AI-powered models can predict	
	Predictive Power	outcomes based on empirical data	allows researchers to
		with greater accuracy than traditional statistical methods.	=
		traditional statistical methods.	behaviours more reliably, contributing to more
			actionable and forward-
			looking research findings.
8	Cost-	By automating many aspects of the	Lower research costs enable
	Effectiveness	research process, AI reduces the	more studies to be conducted
		need for extensive human labor and	within a given budget,
		resources, making empirical	broadening the scope of
0	E-h	research more cost-effective.	research activities.
9	Enhanced Poproducibility	AI algorithms can be consistently applied across different datasets and	Increased reproducibility builds trust in research results
	Reproducibility	studies, improving the	and supports the validation of
		reproducibility of empirical research	scientific knowledge.
		findings.	and wroage.
10	Personalization	AI can tailor research	Personalized research
	of Research	methodologies and analyses to	approaches improve the
	Approaches	specific research questions or	relevance and applicability of
		populations, allowing for more	findings to specific contexts,
		customized and targeted empirical	making the research more
		studies.	impactful.

(iii) Constraints:

Constraints of Redefining the Empirical Research Method Using AI Technology in the AI Era are listed in Table 9.

Table 9: Constraints of Redefining the Empirical Research Method Using AI Technology in the AI Era

S. No.	Key constraints	Description	Example
1		The use of AI in empirical research	•
1	Data Privacy and		Strict regulations and the need
	Security	often involves handling large	for robust security measures can
	Concerns	datasets, some of which may	limit access to data and hinder
		contain sensitive personal or	the research process.
		proprietary information. Ensuring	
		data privacy and security becomes	
		challenging with the increased	
		complexity of AI systems.	
2	Bias in AI	AI algorithms can inherit biases	Biases can distort empirical
	Algorithms	present in the data they are trained	findings, reducing their validity
	8	on or in the design of the	and potentially leading to
		algorithms themselves, leading to	incorrect or harmful
		skewed or unfair research	conclusions.
		outcomes.	
3	High	Running AI models, especially	High costs can limit the
	Computational	complex ones like deep learning	accessibility of AI-powered
	Costs	networks, requires significant	empirical research to well-
	Cusis	computational resources, which	funded institutions, creating
		-	
		can be expensive and require	*
4	T 4 4 1 1994	specialized hardware.	opportunities.
4	Interpretability	AI models, particularly deep	The lack of interpretability can
	Challenges	learning algorithms, are often seen	reduce the transparency of
		as "black boxes" due to their	research methods and make it
		complexity, making it difficult to	difficult for researchers to
		interpret how decisions are made	explain their findings
		or results are derived.	convincingly.
5	Ethical	The use of AI in research raises	Addressing ethical
	Considerations	various ethical issues, including	considerations requires
		concerns about consent, the	additional protocols and
		potential for AI to reinforce	oversight, which can slow down
		stereotypes, and the misuse of	the research process and
		research findings.	increase administrative burdens.
6	Data Ouality and)	
6	Data Quality and Availability	AI-driven empirical research is	Poor data quality can lead to
6	Data Quality and Availability	AI-driven empirical research is highly dependent on the quality	Poor data quality can lead to unreliable results, and the lack
6	-	AI-driven empirical research is highly dependent on the quality and availability of data. In some	Poor data quality can lead to unreliable results, and the lack of available data can constrain
6	-	AI-driven empirical research is highly dependent on the quality and availability of data. In some fields, data may be scarce,	Poor data quality can lead to unreliable results, and the lack
6	-	AI-driven empirical research is highly dependent on the quality and availability of data. In some fields, data may be scarce, incomplete, or of poor quality,	Poor data quality can lead to unreliable results, and the lack of available data can constrain
6	-	AI-driven empirical research is highly dependent on the quality and availability of data. In some fields, data may be scarce, incomplete, or of poor quality, limiting the effectiveness of AI	Poor data quality can lead to unreliable results, and the lack of available data can constrain
	Availability	AI-driven empirical research is highly dependent on the quality and availability of data. In some fields, data may be scarce, incomplete, or of poor quality, limiting the effectiveness of AI tools.	Poor data quality can lead to unreliable results, and the lack of available data can constrain the scope of research studies.
7	Availability Skill Gap and	AI-driven empirical research is highly dependent on the quality and availability of data. In some fields, data may be scarce, incomplete, or of poor quality, limiting the effectiveness of AI tools. Conducting empirical research	Poor data quality can lead to unreliable results, and the lack of available data can constrain the scope of research studies. The need for training and skill
	Availability Skill Gap and Training	AI-driven empirical research is highly dependent on the quality and availability of data. In some fields, data may be scarce, incomplete, or of poor quality, limiting the effectiveness of AI tools. Conducting empirical research using AI technology requires	Poor data quality can lead to unreliable results, and the lack of available data can constrain the scope of research studies. The need for training and skill development can slow down the
	Availability Skill Gap and	AI-driven empirical research is highly dependent on the quality and availability of data. In some fields, data may be scarce, incomplete, or of poor quality, limiting the effectiveness of AI tools. Conducting empirical research using AI technology requires specialized skills in data science,	Poor data quality can lead to unreliable results, and the lack of available data can constrain the scope of research studies. The need for training and skill development can slow down the adoption of AI methods in
	Availability Skill Gap and Training	AI-driven empirical research is highly dependent on the quality and availability of data. In some fields, data may be scarce, incomplete, or of poor quality, limiting the effectiveness of AI tools. Conducting empirical research using AI technology requires specialized skills in data science, machine learning, and AI, which	Poor data quality can lead to unreliable results, and the lack of available data can constrain the scope of research studies. The need for training and skill development can slow down the adoption of AI methods in empirical research, creating a
	Availability Skill Gap and Training	AI-driven empirical research is highly dependent on the quality and availability of data. In some fields, data may be scarce, incomplete, or of poor quality, limiting the effectiveness of AI tools. Conducting empirical research using AI technology requires specialized skills in data science,	Poor data quality can lead to unreliable results, and the lack of available data can constrain the scope of research studies. The need for training and skill development can slow down the adoption of AI methods in empirical research, creating a barrier to entry for some
7	Availability Skill Gap and Training Requirements	AI-driven empirical research is highly dependent on the quality and availability of data. In some fields, data may be scarce, incomplete, or of poor quality, limiting the effectiveness of AI tools. Conducting empirical research using AI technology requires specialized skills in data science, machine learning, and AI, which many researchers may lack.	Poor data quality can lead to unreliable results, and the lack of available data can constrain the scope of research studies. The need for training and skill development can slow down the adoption of AI methods in empirical research, creating a barrier to entry for some researchers.
	Availability Skill Gap and Training Requirements Integration with	AI-driven empirical research is highly dependent on the quality and availability of data. In some fields, data may be scarce, incomplete, or of poor quality, limiting the effectiveness of AI tools. Conducting empirical research using AI technology requires specialized skills in data science, machine learning, and AI, which many researchers may lack. Integrating AI techniques with	Poor data quality can lead to unreliable results, and the lack of available data can constrain the scope of research studies. The need for training and skill development can slow down the adoption of AI methods in empirical research, creating a barrier to entry for some researchers. The integration process can be
7	Availability Skill Gap and Training Requirements Integration with Traditional	AI-driven empirical research is highly dependent on the quality and availability of data. In some fields, data may be scarce, incomplete, or of poor quality, limiting the effectiveness of AI tools. Conducting empirical research using AI technology requires specialized skills in data science, machine learning, and AI, which many researchers may lack. Integrating AI techniques with traditional empirical research	Poor data quality can lead to unreliable results, and the lack of available data can constrain the scope of research studies. The need for training and skill development can slow down the adoption of AI methods in empirical research, creating a barrier to entry for some researchers. The integration process can be time-consuming and may
7	Availability Skill Gap and Training Requirements Integration with	AI-driven empirical research is highly dependent on the quality and availability of data. In some fields, data may be scarce, incomplete, or of poor quality, limiting the effectiveness of AI tools. Conducting empirical research using AI technology requires specialized skills in data science, machine learning, and AI, which many researchers may lack. Integrating AI techniques with	Poor data quality can lead to unreliable results, and the lack of available data can constrain the scope of research studies. The need for training and skill development can slow down the adoption of AI methods in empirical research, creating a barrier to entry for some researchers. The integration process can be

		how AI-generated insights	
		complement or conflict with	implement.
		established methodologies.	
9	Legal and	The use of AI in research is subject	Navigating these regulations can
	Regulatory	to various legal and regulatory	be complex and time-
	Barriers	frameworks that govern data	consuming, potentially delaying
		usage, AI applications, and	research or limiting the types of
		research ethics, which can vary	studies that can be conducted.
		across regions and industries.	
10	Rapid	The field of AI is evolving rapidly,	The fast pace of technological
	Technological	with new tools, techniques, and	change can lead to challenges in
	Change	platforms emerging regularly.	maintaining up-to-date research
		Keeping up with these changes	practices, and previously
		requires continuous learning and	established methods may
		adaptation.	quickly become obsolete.

(iv) Disadvantages:

Disadvantages of Redefining the Empirical Research Method Using AI Technology in the AI Era are listed in Table 10.

Table 10: Disadvantages of Redefining the Empirical Research Method Using AI Technology in the AI Era

S. No.	Key Disadvantages	Description	Example
1	Over-Reliance on Technology	Researchers may become overly dependent on AI tools, leading to a reduction in critical thinking and manual analysis skills.	This over-reliance can result in a lack of depth in research interpretation and an inability to troubleshoot issues without AI assistance.
2	Reduction in Human Oversight	AI-driven empirical research may reduce the level of human oversight, potentially leading to errors or misinterpretations that go unnoticed.	This can be especially problematic in research areas requiring nuanced human judgment.
3	Cost Implications	Implementing AI technologies in empirical research requires substantial financial investment in software, hardware, and specialized training.	These costs may be prohibitive for smaller institutions or independent researchers.
4	Complexity of Implementation	The integration of AI into empirical research methods can be highly complex, requiring significant time and resources to implement effectively.	This complexity can create barriers to adoption, particularly in fields with less technical expertise.
5	Ethical and Legal Challenges	The use of AI in research raises numerous ethical and legal concerns, such as the potential for misuse of data, biases in AI algorithms, and challenges in obtaining informed consent when AI is involved in data collection and analysis.	
6	Data Misinterpretation Risks	AI algorithms may generate results that are statistically accurate but	This can lead to misinterpretation of findings, especially when researchers

		lack meaningful interpretation in the	lack a deep understanding of
		real-world context.	the underlying AI processes.
7	Job Displacement	As AI takes on more roles in data	This can lead to job
	for Traditional	analysis and research, traditional	displacement and a loss of
	Researchers	researchers who lack AI skills may	valuable human expertise in
		find their roles diminished or even obsolete.	the research field.
8	Limited	AI algorithms, especially those	This lack of transparency can
	Transparency	based on machine learning, often	hinder accountability and
	and	operate as "black boxes," making it	reduce trust in research
	Accountability	difficult to understand how	outcomes.
		decisions are made.	
9	Potential for	The adoption of AI in empirical	
	Widening the	research may widen the digital	
	Digital Divide	divide between well-funded	
		institutions with access to advanced	
		technology and those without,	
		exacerbating existing inequalities in	
		research capabilities and output.	
10	Short-Term	The rapid pace of AI development	Researchers may prioritize
	Focus Over	may encourage a focus on short-	quick results facilitated by AI
	Long-Term	term research outputs rather than	over deeper, more time-
	Impact	long-term, impactful studies.	consuming investigations that
			yield more substantial
			insights.

11.3 Exploratory Research in AI Era:

(i) Advantages:

Advantages of Redefining the Exploratory Research Method Using AI Technology in the AI Era Enhanced Data Analysis Capabilities are listed in following table 11:

Table 11: Advantages of Redefining the Exploratory Research Method Using AI Technology

S. No.	Key advantage	Description
1	AI technology significantly enhances the ability to analyze large and complex datasets quickly.	In exploratory research, where data patterns and trends are often unclear at the outset, AI algorithms can uncover hidden insights, offering a more comprehensive understanding of the subject under investigation.
2	Improved Hypothesis Generation	AI can assist researchers in generating new hypotheses by identifying correlations and patterns in data that might not be immediately apparent to humans. This can lead to more robust and diverse lines of inquiry, enriching the exploratory research process.
3	Faster Iterative Processes	Exploratory research often involves multiple iterations to refine research questions and methods. AI can accelerate this process by automating routine tasks, such as data preprocessing and analysis, allowing researchers to focus on interpreting results and refining their approach more quickly.
4	Access to Real-Time Data	AI systems can process and analyze real-time data from various sources, enabling exploratory researchers to work with the most current information available. This is particularly advantageous in fields where trends and phenomena change rapidly, such as in social media studies or market research.

5	Interdisciplinary	Description: AI enables the integration of data and methodologies
	Research	from multiple disciplines, fostering interdisciplinary exploratory
	Opportunities	research. This cross-pollination of ideas and approaches can lead
	Opportunities	to innovative insights that would be difficult to achieve within a
	1.0	single discipline.
6	Increased Research	Description: AI allows exploratory research to be conducted on a
	Scalability	larger scale, both in terms of data volume and geographic reach.
		Researchers can explore global datasets, collaborate across
		borders, and apply AI tools to vast amounts of information,
		leading to more generalizable and impactful findings.
7	Reduction of Human	While AI is not free from bias, it can help reduce certain types of
	Bias	human biases in exploratory research by providing more objective
		data analysis and decision-making tools. This can lead to more
		reliable and unbiased research outcomes, especially when AI is
		used to triangulate findings from different sources.
8	Enhanced	AI-driven tools can produce advanced visualizations that make it
	Visualization of	easier to interpret complex data patterns. These visualizations are
	Complex Data	invaluable in exploratory research, where the goal is often to
	compress 2 and	uncover and understand complex relationships within the data.
9	Automation of	AI can automate many repetitive tasks associated with
	Repetitive Tasks	exploratory research, such as data cleaning, coding, and initial
	Tepetitive Tasks	analysis. This frees up researchers to focus on more creative and
		strategic aspects of their research, such as developing new
10	Alailian da II an Ala	questions and exploring different methodologies.
10	Ability to Handle	Exploratory research often involves unstructured data, such as
	Unstructured Data	text, images, and videos. AI technologies, particularly natural
		language processing and computer vision, are highly effective at
		analyzing unstructured data, providing new opportunities for

These advantages demonstrate how AI can transform exploratory research by making it more efficient, comprehensive, and capable of addressing complex and rapidly changing research questions.

(ii) Benefits:

Benefits of Redefining the Exploratory Research Method Using AI Technology in the AI Era Enhanced Data Analysis Capabilities are listed in following table 12:

Table 12: Benefits of Redefining the Exploratory Research Method Using AI Technology in the AI Era

S. No.	Key Benefits	Description
1	Increased	AI technology accelerates the exploratory research process by
	Research Speed	quickly analyzing large datasets, automating repetitive tasks, and
		rapidly generating insights. This increased speed allows researchers
		to explore more hypotheses and adapt their research focus in real-
		time, leading to quicker discoveries and advancements.
2	Enhanced	AI algorithms are capable of processing data with a high degree of
	Precision and	precision, reducing human error and increasing the accuracy of
	Accuracy	research findings. This precision is particularly beneficial in
		exploratory research, where initial findings guide the direction of
		subsequent studies.
3	Improved Access	AI enables the integration and analysis of diverse data sources,
	to Diverse Data	including structured and unstructured data from various domains.
	Sources	This capability allows exploratory researchers to examine a broader
		range of information, leading to more holistic and nuanced insights.

4	Greater Flexibility in	AI tools offer flexibility in research design by allowing researchers to easily modify their approach as new data and insights emerge. This
	Research Design	adaptability is crucial in exploratory research, where the research path is not predetermined and must evolve based on findings.
5	Empowered Data-Driven Decision-Making	By leveraging AI, researchers can base their decisions on robust data analysis rather than intuition or limited datasets. This data-driven approach enhances the credibility of exploratory research findings and supports more informed decision-making in subsequent research phases.
6	Cost Efficiency	The automation of data processing and analysis through AI can significantly reduce the cost of exploratory research. Fewer resources are required for manual data handling, allowing research funds to be allocated more effectively and potentially increasing the scope of the research.
7	Scalability of Research Projects	AI technology allows exploratory research to be scaled up with relative ease, enabling researchers to handle larger datasets and more complex research questions. This scalability is particularly beneficial for projects that require extensive data analysis or that aim to produce generalizable results.
8	Enhanced Collaboration	AI tools facilitate collaboration among researchers by providing platforms for data sharing, joint analysis, and collective hypothesis generation. This collaborative environment enriches exploratory research by incorporating diverse perspectives and expertise, leading to more comprehensive findings.
9	Real-Time Adaptation to Emerging Trends	AI enables researchers to monitor and respond to emerging trends in real-time. This ability to adapt on the fly is a significant benefit in exploratory research, where the research focus may shift as new patterns or phenomena are observed.
10	Increased Potential for Innovation	By redefining exploratory research methods with AI, researchers can uncover novel insights and make connections that were previously impossible. This potential for innovation is a key benefit, as it can lead to groundbreaking discoveries and the development of new theories and models.

These benefits highlight the transformative impact of AI technology on exploratory research, making it faster, more accurate, flexible, and capable of generating innovative and impactful insights.

(iii) Constraints:

Constraints of Redefining the Exploratory Research Method Using AI Technology in the AI Era Enhanced Data Analysis Capabilities are listed in following table 13:

Table 13: Constraints of Redefining the Exploratory Research Method Using AI Technology in the AI Era

S. No.	Key constraints	Description
1	Data Quality and	The effectiveness of AI-driven exploratory research is highly
	Availability	dependent on the quality and availability of data. Inconsistent,
		incomplete, or biased data can lead to erroneous conclusions,
		limiting the reliability of the research outcomes. Additionally, access
		to large, high-quality datasets may be restricted due to privacy
		concerns or proprietary restrictions.
2	Complexity of AI	The sophisticated AI models used in exploratory research can be
	Models	complex and difficult to understand for researchers who are not AI
		specialists. This complexity may lead to challenges in interpreting
		the results, understanding the underlying mechanisms of the AI
		algorithms, and communicating findings to a broader audience.

3	Resource Intensity	Implementing AI technology in exploratory research often requires significant computational resources, including powerful hardware, specialized software, and technical expertise. This resource intensity can be a constraint for smaller research teams or institutions with limited budgets.
4	Ethical Concerns	The use of AI in research raises ethical concerns, particularly regarding data privacy, informed consent, and the potential for biased algorithms. These ethical considerations must be carefully managed to ensure that the research adheres to ethical standards and does not inadvertently cause harm.
5	Dependence on AI Tools	A heavy reliance on AI tools may reduce researchers' ability to think critically and creatively, potentially leading to an overdependence on technology. This could constrain the exploratory nature of research, where human intuition and insight are often crucial in identifying novel patterns or generating hypotheses.
6	Limited Interpretability	Many AI models, especially deep learning algorithms, are often considered "black boxes," meaning their decision-making processes are not easily interpretable. This lack of transparency can be a constraint in exploratory research, where understanding the reasoning behind findings is essential for developing new theories and models.
7	Bias in AI Algorithms	AI algorithms can perpetuate or even exacerbate existing biases present in the data they are trained on. In exploratory research, where the goal is to discover new insights, these biases can lead to skewed results and may reinforce existing prejudices or overlook minority perspectives.
8	Regulatory and Legal Challenges	The use of AI in research is subject to evolving regulatory and legal frameworks, which can vary significantly across regions and industries. Navigating these regulations can be complex and may pose constraints on the scope and methodology of exploratory research projects.
9	Skill Gaps	There is a significant skill gap between traditional researchers and the technical expertise required to effectively use AI tools. This gap can limit the ability of researchers to fully leverage AI technology in exploratory research and may require substantial investment in training and education.
10	Integration with Traditional Research Methods	Integrating AI-driven approaches with traditional exploratory research methods can be challenging. Researchers may struggle to align AI methodologies with established research paradigms, potentially leading to conflicts or inconsistencies in the research process.

These constraints highlight the challenges and limitations that must be addressed when redefining exploratory research methods using AI technology. While AI offers significant potential benefits, careful consideration of these constraints is necessary to ensure the integrity and success of research projects.

(iv) Disadvantages:

Disadvantages of Redefining the Exploratory Research Method Using AI Technology in the AI Era Enhanced Data Analysis Capabilities are listed in following table 14:

Table 14: Disadvantages of Redefining the Exploratory Research Method Using AI Technology in the AI Era

S. No.	Key Disadvantages	Description
1	Overreliance on AI	One of the major disadvantages of integrating AI into
		exploratory research is the potential overreliance on AI systems.

PAGE 124

		Descriptions may become demandant on AI tools to concepts
		Researchers may become dependent on AI tools to generate
		hypotheses or identify patterns, potentially undermining their
		own analytical skills and creativity.
2	Loss of Human	Exploratory research often relies on human intuition and the
	Intuition	ability to identify novel insights. AI systems, while powerful,
		operate within the constraints of their programming and the data
		they are trained on, potentially missing out on unexpected or
		serendipitous discoveries that a human researcher might make.
3	High Costs	Implementing AI technology in exploratory research can be
		prohibitively expensive. The costs associated with acquiring AI
		tools, processing large datasets, and maintaining computational
		resources can be a significant barrier, particularly for smaller
		research institutions or individual researchers.
4	Data Privacy and	The use of AI often requires access to vast amounts of data,
	Security Risks	some of which may be sensitive or private. This raises concerns
	Security rasks	about data privacy and security, as breaches or misuse of data
		could have serious ethical and legal implications, particularly in
		exploratory research that deals with personal or confidential
		information.
5	Limited	AI-driven insights generated in exploratory research may be
3	Generalizability	highly specific to the dataset used, limiting their generalizability
	Generalizability	to other contexts or populations. This can constrain the broader
		applicability of research findings, making them less useful in
		real-world scenarios.
6	Algorithmic Dies	
O	Algorithmic Bias	AI systems can inadvertently perpetuate or exacerbate biases
		present in the data they are trained on. This is particularly
		problematic in exploratory research, where the goal is to
		uncover new insights. Biased algorithms can lead to skewed or
		inaccurate findings, potentially reinforcing existing stereotypes
7	Ed: 1D:	or excluding minority groups.
7	Ethical Dilemmas	The integration of AI into exploratory research can introduce
		ethical dilemmas, such as the potential for dehumanizing
		research subjects or the misuse of AI-generated data. These
		dilemmas may complicate the research process and require
		careful consideration to ensure that the research remains ethical
0		and responsible.
8	Complexity of AI	The complexity of AI systems can be a significant disadvantage,
	Systems	particularly for researchers who are not experts in AI
		technology. Understanding and interpreting the results
		generated by AI algorithms can be challenging, leading to
0	TID'I	potential misunderstandings or misapplications of the findings.
9	Job Displacement	The increased use of AI in exploratory research may lead to
		concerns about job displacement within the research
		community. As AI systems become more capable of performing
		tasks traditionally done by human researchers, there may be
		fewer opportunities for researchers to engage in certain types of
1.0		exploratory work.
10	Technological	As AI becomes more integrated into exploratory research, there
	Dependency	is a risk of technological dependency. This can lead to
		challenges if AI systems fail, become obsolete, or are
į l		inaccessible due to technical issues or resource limitations,
ļ l		potentially halting or hindering research progress.

These disadvantages illustrate the potential risks and downsides of redefining exploratory research methods using AI technology. While AI offers powerful tools and capabilities, it is important to carefully

consider these disadvantages to ensure that the integration of AI into research practices is done thoughtfully and responsibly.

12. DISCUSSION:

12.1 Comparative Analysis:

12.1.2 Comparing the Findings of Redefining Research Methods Across Experimental, Empirical, and Exploratory Research in the AI Era:

In the AI era, redefining research methods across experimental, empirical, and exploratory research presents unique opportunities and challenges. Each research method has been impacted by AI in different ways, reflecting distinct advantages, benefits, constraints, and disadvantages. Below is a comparative analysis of these findings:

(1) Advantages

- Experimental Research: AI enhances precision and efficiency in experimental research by automating processes, enabling the simulation of complex environments, and allowing for real-time data analysis. This leads to more accurate and reproducible results.
- **Empirical Research**: AI-driven tools can analyze large datasets quickly, uncovering patterns and correlations that may not be apparent through traditional methods. This broadens the scope and depth of empirical investigations.
- Exploratory Research: AI's ability to process unstructured data and generate novel hypotheses offers significant advantages in exploratory research. It allows researchers to uncover new insights and directions in a fraction of the time.

(2) Benefits

- Experimental Research: The integration of AI in experimental research can lead to the discovery of new variables and relationships, potentially transforming the research landscape. AI also facilitates the replication of studies, improving the reliability of findings.
- **Empirical Research**: AI benefits empirical research by providing access to vast amounts of data from diverse sources, enabling more comprehensive studies. It also supports the validation of theories through advanced statistical methods.
- **Exploratory Research**: In exploratory research, AI benefits include the ability to explore vast datasets, identify hidden trends, and generate new research questions. AI's exploratory algorithms can lead to the identification of previously unknown phenomena.

(3) Constraints

- Experimental Research: The reliance on AI may introduce constraints related to the complexity of AI algorithms, the need for specialized knowledge to interpret results, and the potential for overfitting models to specific datasets.
- **Empirical Research**: Empirical research faces constraints such as the need for high-quality, clean data to ensure accurate AI-driven analysis. Additionally, the interpretability of AI models can be limited, making it challenging to understand the underlying causes of observed patterns.
- Exploratory Research: Exploratory research using AI can be constrained by algorithmic biases, which may skew findings. The reliance on AI tools also raises concerns about the loss of human intuition and the potential for missing serendipitous discoveries.

(4) Disadvantages

- Experimental Research: A key disadvantage of AI in experimental research is the potential for data privacy issues and ethical concerns, especially when using sensitive data. Additionally, AI's deterministic nature may limit the scope for creative experimental designs.
- **Empirical Research**: In empirical research, the disadvantages include the risk of AI reinforcing existing biases in data, leading to biased conclusions. The high cost of implementing AI tools and the potential for job displacement are also significant concerns.
- Exploratory Research: The disadvantages in exploratory research include the risk of overreliance on AI, which may lead to a diminished role for human intuition in the research process. Moreover, the complexity of AI systems can be a barrier for researchers who are not experts in AI.

(5) Comparative Insights:

• **Precision vs. Flexibility**: Experimental research benefits most from AI's precision and ability to control variables, whereas exploratory research benefits from AI's flexibility in uncovering

new insights. Empirical research stands between these two, leveraging AI for its capacity to handle large datasets and validate theories.

- **Data Dependency**: All three research methods share a dependency on high-quality data when using AI. However, this is particularly critical in empirical research, where the accuracy of AI-driven findings is directly tied to the quality of input data.
- **Human Intuition**: Exploratory research is most at risk of losing the benefits of human intuition with AI's growing role, while experimental research might face reduced creative experimental designs due to AI's deterministic nature. Empirical research, although data-driven, still requires human interpretation of AI-generated patterns.
- Ethical Considerations: All methods face ethical challenges, but these are most pronounced in experimental research, especially when human subjects are involved. The use of AI in empirical research raises concerns about data bias, while exploratory research must contend with the ethical implications of AI-driven discoveries.

Thus, redefining research methods in the AI era requires a nuanced understanding of both the potential and limitations of AI technology. Experimental research stands to gain the most from AI's precision, while empirical research benefits from its capacity to handle vast datasets. Exploratory research, on the other hand, must balance the advantages of AI-driven insights with the need to maintain human intuition and creativity. Across all methods, researchers must remain vigilant about the ethical, interpretative, and practical challenges that AI introduces, ensuring that AI complements rather than compromises the integrity of research.

12.2 Implications for AI Research:

12.2.1 Impact of Redefining Research Methods on AI Technology Research Methodologies:

Redefining experimental, empirical, and exploratory research in the era of AI technology significantly impacts research methodologies in several ways. Each research method's adaptation to AI technology shapes the overall research landscape, influencing how AI research is conducted, interpreted, and applied. Below is a detailed examination of these impacts:

(1) Impact on Experimental Research:

Enhanced Precision and Control: AI technologies, particularly machine learning algorithms and simulation tools, enable researchers to design and conduct experiments with greater precision. AI can automate data collection, control experimental variables, and analyze results with high accuracy. This leads to more reliable and reproducible experimental outcomes, enhancing the validity of research findings (Liu et al., 2022 [88]).

Automated Hypothesis Testing: AI tools can assist in automating hypothesis testing through advanced data analytics and modeling. Researchers can run multiple simulations to test various hypotheses simultaneously, accelerating the experimental process and uncovering insights that might be missed using traditional methods (Gil. Y., (2016), [89]).

Increased Complexity: The integration of AI introduces new layers of complexity in experimental design. Researchers need to understand and manage the intricacies of AI algorithms and their impact on experimental results. This can require specialized knowledge and training, potentially limiting the accessibility of advanced experimental methods to a broader research community (Liang, W., (2022). [901])

(2) Impact on Empirical Research:

Big Data Analysis: AI technology revolutionizes empirical research by enabling the analysis of vast datasets that were previously unmanageable. AI algorithms can process and analyze data at scale, uncovering patterns and trends that inform empirical studies and enhance the robustness of research findings (Peretz-Andersson, E., & Torkar, R. (2022). [91]).

Improved Data Validity: AI tools improve data validation and integrity by identifying and correcting anomalies in large datasets. This enhances the reliability of empirical research, ensuring that findings are based on accurate and high-quality data (Chen, 2023 [92]).

Challenges in Interpretability: One of the challenges introduced by AI in empirical research is the interpretability of complex models. While AI can uncover significant insights, understanding and explaining the rationale behind AI-driven conclusions can be difficult. This affects how empirical findings are communicated and utilized (Shah, V., & Konda, S. R. (2021). [93]).

(3) Impact on Exploratory Research:

Accelerated Discovery: AI accelerates exploratory research by analyzing unstructured data and generating new hypotheses. This capability allows researchers to explore new areas of inquiry more quickly and efficiently, leading to faster discovery of novel patterns and relationships (Piddock et al. (2024). [94]).

Increased Innovation: AI fosters innovation in exploratory research by providing tools that can handle diverse types of data and generate insights beyond traditional methods. This expands the scope of exploratory research and facilitates the exploration of unconventional research questions (Zahlan et al. (2023). [95]).

Risk of Overreliance: A potential downside of AI in exploratory research is the risk of overreliance on automated systems. While AI can offer valuable insights, it may also lead to a reduction in the role of human intuition and creativity in formulating research questions and interpreting findings (Vasconcelos, (2023). [96]).

(4) Overall Impact on Research Methodologies in AI:

Integration of AI into Research Design: The integration of AI into research methodologies reshapes how experiments, empirical studies, and exploratory inquiries are designed and conducted. Researchers must adapt their approaches to leverage AI's capabilities while addressing the associated challenges, such as interpretability and data complexity.

Enhanced Research Capabilities: AI enhances research capabilities by providing powerful tools for data analysis, hypothesis testing, and discovery. This leads to more sophisticated and comprehensive research methodologies that can handle complex and large-scale datasets effectively.

Need for New Skillsets: The evolving landscape of research methodologies in the AI era necessitates new skillsets among researchers. Understanding AI algorithms, managing large datasets, and interpreting AI-generated insights require specialized knowledge and training.

Ethical Considerations: Redefining research methods with AI introduces ethical considerations, such as data privacy, algorithmic bias, and the potential for misuse of AI technologies. Researchers must navigate these ethical challenges to ensure responsible and ethical use of AI in research.

Future Directions: As AI technology continues to evolve, research methodologies will likely undergo further transformations. Researchers will need to stay abreast of technological advancements, continually adapt their methodologies, and address emerging challenges to harness the full potential of AI in research.

12.3 Theoretical and Practical Implications:

12.3.1 Implications of Redefining Experimental, Empirical, and Exploratory Research in the Era of AI Technology:

Redefining research methods—experimental, empirical, and exploratory—in the AI era has profound implications for both theory development and practical applications. These implications extend across various domains, affecting how research is conducted, how theories are developed, and how practical solutions are applied.

(1) Implications for Experimental Research:

- (a) Enhanced Theoretical Precision: All technology enhances the precision of experimental research, leading to more accurate and reliable theories. Advanced algorithms and simulations can test complex hypotheses with high accuracy, refining theoretical models and contributing to more robust theoretical frameworks.
- **(b) Accelerated Theory Validation:** AI tools enable faster validation of theoretical models by automating data collection and analysis. This acceleration allows researchers to quickly test and refine theoretical concepts, leading to more rapid advancements in theoretical knowledge.
- (c) Increased Complexity in Theory Testing: The use of AI introduces new complexities in experimental design, requiring researchers to account for algorithmic influences on experimental outcomes. This complexity necessitates a deeper understanding of AI's role in theory testing and development.
- (d) New Experimental Paradigms: AI enables the development of new experimental paradigms that can explore previously unfeasible research questions. This includes the ability to simulate complex systems and interactions, leading to innovative theoretical insights.
- (2) Implications for Empirical Research:

- (a) Refinement of Empirical Theories: AI enhances the analysis of large datasets, leading to the refinement of empirical theories. The ability to uncover hidden patterns and relationships within data helps in the development of more nuanced and comprehensive empirical theories (Jiang et al., 2022).
- **(b) Improved Data Interpretation:** AI tools improve data interpretation by providing advanced analytics and visualization capabilities. This enhances the ability to derive meaningful insights from empirical data, leading to more accurate and actionable theories.
- (c) Challenges in Data Validity: While AI improves data analysis, it also introduces challenges related to data validity and algorithmic bias. Ensuring the accuracy and fairness of AI-driven insights is crucial for maintaining the integrity of empirical research.
- **(d)** Expansion of Empirical Scope: AI allows empirical research to cover broader and more diverse datasets, expanding the scope of empirical studies. This broader scope can lead to the development of more generalized and applicable empirical theories.
- (3) Implications for Exploratory Research:
- (a) Accelerated Discovery of New Theories: AI accelerates the discovery of new theories by analyzing unstructured data and generating novel insights. This rapid discovery process leads to the development of innovative theoretical concepts and research directions.
- **(b) Expansion of Research Horizons:** AI facilitates the exploration of unconventional research questions and interdisciplinary studies. This expansion of research horizons can lead to the development of new theoretical frameworks that integrate diverse fields of knowledge.
- (c) Risk of Overreliance on AI: The reliance on AI in exploratory research poses a risk of overreliance, where researchers may depend too heavily on automated tools without sufficient human intuition. This can affect the quality and originality of theoretical developments.
- **(d)** Evolution of Research Methodologies: AI-driven exploratory research requires the evolution of research methodologies to incorporate AI tools effectively. This evolution includes adapting research designs and approaches to leverage AI's capabilities while addressing associated challenges.

12.3.2 Practical Applications:

- (a) Innovation and Development: Redefined research methods lead to practical innovations and developments across various fields. AI-enhanced research methodologies drive technological advancements, policy development, and industry practices by providing deeper insights and more effective solutions.
- **(b) Enhanced Decision-Making:** AI-driven research methodologies improve decision-making processes by providing accurate and actionable insights. This is particularly relevant in fields such as healthcare, finance, and engineering, where data-driven decisions are crucial.
- **(c) Interdisciplinary Collaboration:** The integration of AI into research fosters interdisciplinary collaboration by bridging gaps between different fields. This collaboration leads to the development of integrated solutions and theories that address complex real-world problems.
- (d) Ethical Considerations and Policy Development: AI research methodologies highlight the importance of addressing ethical considerations and developing policies to ensure responsible use of AI. This includes considerations related to data privacy, algorithmic fairness, and the impact of AI on society.

13. CONCLUSION:

13.1 Summary of Findings:

The redefinition of experimental, empirical, and exploratory research methodologies in the era of AI technology has led to transformative advancements in how research is conducted and understood. AI's integration into these research methods has introduced both significant benefits and considerable challenges, reshaping traditional paradigms and setting new standards for scholarly inquiry.

- (1) Experimental Research has been revolutionized by AI through enhanced precision, accelerated validation processes, and the creation of new experimental paradigms. AI's ability to handle complex data and simulations allows for more accurate hypothesis testing and theory development. However, this has also introduced complexities in experimental design, requiring researchers to navigate the influences of algorithms on outcomes and the integration of new experimental techniques.
- (2) Empirical Research benefits from AI's advanced data analysis capabilities, which refine empirical theories and improve data interpretation. AI tools enable the exploration of larger and more diverse

datasets, leading to more nuanced and comprehensive theories. Despite these advantages, challenges related to data validity and algorithmic bias must be addressed to maintain the integrity of empirical research.

(3) Exploratory Research in the AI era has accelerated the discovery of new theories and expanded research horizons. AI facilitates the analysis of unstructured data and fosters interdisciplinary studies, leading to innovative theoretical developments. However, there is a risk of overreliance on AI, which could impact the originality of research. The evolving methodologies necessitate a balance between leveraging AI's capabilities and maintaining human insight.

Overall, the integration of AI into research methodologies has profound implications for theory development and practical applications. AI enhances the efficiency and scope of research but also introduces new complexities and ethical considerations. Researchers must adapt to these changes by developing new methodologies, addressing associated challenges, and ensuring that AI's influence enhances rather than hinders scholarly progress. The continuous evolution of AI technology will likely drive further advancements in research methods, offering opportunities for more robust and innovative research outcomes.

Thus, the redefinition of experimental, empirical, and exploratory research in the AI era represents a significant shift towards more precise, expansive, and innovative research practices. Balancing the benefits and constraints of AI integration will be crucial for advancing scientific knowledge and addressing the challenges of modern research.

13.2 Suggestions for further research based on the findings:

Based on the findings of redefining experimental, empirical, and exploratory research in the AI era, the following suggestions for further research are proposed:

- (1) Development of AI-Driven Methodologies: Future research should focus on creating AI-driven methodologies tailored specifically for experimental, empirical, and exploratory research. This includes the development of algorithms that can automatically adjust research designs, simulate experimental conditions, and refine hypotheses based on real-time data.
- (2) Addressing Ethical Considerations: Research should explore the ethical implications of AI integration in research methodologies. This includes investigating how AI may influence research outcomes, the potential for algorithmic bias, and the ethical use of AI in sensitive research areas such as healthcare and social sciences.
- (3) Hybrid Models Combining AI and Human Expertise: Investigating the effectiveness of hybrid models that combine AI capabilities with human expertise could lead to more balanced and robust research outcomes. Research should examine how these models can enhance creativity, decision-making, and the overall quality of research.
- (4) AI in Longitudinal and Cross-Disciplinary Studies: Further research is needed to explore how AI can be leveraged in longitudinal studies and cross-disciplinary research. This includes examining the role of AI in managing complex, multi-dimensional datasets over extended periods and across various fields of study.
- (5) Impact of AI on Data Interpretation and Theory Validation: Studies should focus on how AI impacts data interpretation and the validation of theories in empirical research. This includes assessing the accuracy and reliability of AI-driven interpretations and their implications for theory development.
- **(6) Standardization of AI Research Protocols**: Research should aim to establish standardized protocols for integrating AI into research methodologies. This includes creating guidelines for AI use in experimental setups, data analysis, and reporting of research findings to ensure consistency and reproducibility.
- (7) AI's Role in Enhancing Research Collaboration: Exploring how AI can facilitate collaboration between researchers across different disciplines and geographical locations could lead to innovative research partnerships. Future research could focus on the development of AI platforms that support collaborative research efforts.
- (8) Training and Education in AI-Enhanced Research: There is a need for research on the development of educational programs that train researchers in AI-enhanced methodologies. This includes creating curricula that incorporate AI tools and techniques into research training programs for both new and experienced researchers.

- (9) AI and the Evolution of Research Paradigms: Further studies should investigate how AI is influencing the evolution of traditional research paradigms. This includes exploring how AI is reshaping the definitions and boundaries of experimental, empirical, and exploratory research methods.
- (10) Evaluation of AI's Impact on Research Outcomes: Research should evaluate the long-term impact of AI on research outcomes across different fields. This includes assessing whether AI integration leads to more innovative, accurate, and impactful research findings, and how these outcomes compare to traditional methodologies.

These suggestions aim to advance the understanding and application of AI in research, addressing both the opportunities and challenges presented by this rapidly evolving technology. By focusing on these areas, future research can contribute to the refinement and enhancement of research methodologies in the AI era.

REFERENCES:

- [1] Crowther, D., & Lancaster, G. (2012). Research methods. Routledge. Google Scholar
- [2] Aithal, P. S., & Aithal, S. (2023). Use of AI-based GPTs in experimental, empirical, and exploratory research methods. *International Journal of Case Studies in Business, IT, and Education (IJCSBE)*, 7(3), 411-425. Google Scholar
- [3] Aithal, A., & Aithal, P. S. (2020). Development and validation of survey questionnaire & experimental data—a systematical review-based statistical approach. *International Journal of Management, Technology, and Social Sciences (IJMTS)*, 5(2), 233-251. Google Scholar
- [4] Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). SAGE Publications. Google Scholar

 ✓
- [5] Patten, M. L., & Newhart, M. (2017). *Understanding research methods: An overview of the essentials* (10th ed.). Routledge. <u>Google Scholar</u>
- [6] Stebbins, R. A. (2001). *Exploratory research in the social sciences*. SAGE Publications. https://doi.org/10.4135/9781412984249, Google Scholar
- [7] Swedberg, R. (2020). Exploratory research. *The production of knowledge: Enhancing progress in social science*, 2(1), 17-41. Google Scholar
- [8] Boden, M. A. (2016). AI: Its nature and future. Oxford University Press. Google Scholar
- [9] Marcus, G., & Davis, E. (2019). *Rebooting AI: Building artificial intelligence we can trust*. Pantheon Books. Google Scholar ₹
- [10] Domingos, P. (2015). The master algorithm: How the quest for the ultimate learning machine will remake our world. Basic Books. Google Scholar
- [11] Halevy, A., Norvig, P., & Pereira, F. (2009). The unreasonable effectiveness of data. *IEEE Intelligent Systems*, 24(2), 8-12. https://doi.org/10.1109/MIS.2009.36, Google Scholar
- [12] Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., ... & Vayena, E. (2018). AI4People—An ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. *Minds and Machines*, 28(4), 689-707. https://doi.org/10.1007/s11023-018-9482-5. Google Scholar
- [13] Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. *Big Data & Society*, 3(2), 01-21. https://doi.org/10.1177/2053951716679679, Google Scholarx
- [14] Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. *Science*, 349(6245), 255-260. https://doi.org/10.1126/science.aaa8415, Google Scholar
- [15] Silver, N. (2016). The signal and the noise: Why so many predictions fail—but some don't. Penguin Books. Google Scholar

- [16] Russell, S., & Norvig, P. (2016). Artificial intelligence: A modern approach (3rd ed.). Pearson. Google Scholar
- [17] Brynjolfsson, E., & McAfee, A. (2017). *The second machine age: Work, progress, and prosperity in a time of brilliant technologies*. W. W. Norton & Company. Google Scholar
- [18] Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. *Science*, 349(6245), 255-260. https://doi.org/10.1126/science.aaa8415. Google Scholar
- [19] Russell, S., & Norvig, P. (2016). Artificial intelligence: A modern approach (3rd ed.). Pearson. Google Scholar
- [20] Schmidt, J., Marques, M. R. G., Botti, S., & Glotzer, S. C. (2019). Recent advances and applications of machine learning in solid-state materials science. npj Computational Materials, 5(83), 1-11. https://doi.org/10.1038/s41524-019-0221-0. Google Scholar

 7
- [21] Subedi, D. K. (2013). Signal and noise: Why so many predictions fail—but some don't. Competitiveness Review: An International Business Journal, 23(4/5), 426-430. Google Scholar
- [22] Halevy, A., Norvig, P., & Pereira, F. (2009). The unreasonable effectiveness of data. *IEEE Intelligent Systems*, 24(2), 8-12. https://doi.org/10.1109/MIS.2009.36. Google Scholar
- [23] Brynjolfsson, E., & McAfee, A. (2017). *The second machine age: Work, progress, and prosperity in a time of brilliant technologies*. W. W. Norton & Company. Google Scholar
- [24] Marcus, G., & Davis, E. (2019). Rebooting AI: Building artificial intelligence we can trust. Pantheon Books. Google Scholar
- [25] Schneider, P., Walters, W. P., Plowright, A. T., Sieroka, N., Listgarten, J., Goodnow, R. A., ... & Schneider, G. (2020). Rethinking drug design in the artificial intelligence era. *Nature Reviews Drug Discovery*, 19(5), 353-364. https://doi.org/10.1038/s41573-019-0050-3. Google Scholar
- [26] Sanchez-Lengeling, B., & Aspuru-Guzik, A. (2018). Inverse molecular design using machine learning: Generative models for matter engineering. *Science*, 361(6400), 360-365. https://doi.org/10.1126/science.aat2663. Google Scholarx
- [27] Lazer, D., Baum, M. A., Benkler, Y., Berinsky, A. J., Greenhill, K. M., Menczer, F., ... & Zittrain, J. L. (2020). The science of fake news. *Science*, 359(6380), 1094-1096. https://doi.org/10.1126/science.aao2998. Google Scholar
- [28] Agrawal, A., Gans, J. S., & Goldfarb, A. (2018). Prediction machines: The simple economics of artificial intelligence. Harvard Business Review Press. Google Scholar
- [29] Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019). A guide to deep learning in healthcare. *Nature Medicine*, 25(1), 24-29. https://doi.org/10.1038/s41591-018-0316-z. Google Scholar
- [30] Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, K., ... & Bengio, Y. (2019). Tackling climate change with machine learning. *arXiv* preprint arXiv:1906.05433. Google Scholar
- [31] Mayer-Schönberger, V., & Cukier, K. (2013). Big data: A revolution that will transform how we live, work, and think. Houghton Mifflin Harcourt. Google Scholar
- [32] Fan, M., Hu, J., Cao, R., Ruan, W., & Wei, X. (2018). A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence. *Chemosphere*, 200, 330-343. Google Scholar
- [33] Mata, J., De Miguel, I., Durán, R. J., Merayo, N., Singh, S. K., Jukan, A., & Chamania, M. (2018). Artificial intelligence (AI) methods in optical networks: A comprehensive survey. *Optical switching and networking*, 28, 43-57. Google Scholar

- [34] Ngarambe, J., Yun, G. Y., & Santamouris, M. (2020). The use of artificial intelligence (AI) methods in the prediction of thermal comfort in buildings: Energy implications of AI-based thermal comfort controls. *Energy and Buildings*, 211, 109807. Google Scholar
- [35] Walsh, T. (1998). Empirical methods in AI. AI Magazine, 19(2), 121-121. Google Scholar
- [36] Aithal, P. S., & Aithal, S. (2023). Use of AI-based GPTs in experimental, empirical, and exploratory research methods. *International Journal of Case Studies in Business, IT, and Education (IJCSBE)*, 7(3), 411-425. Google Scholar
- [37] Dogan, M. E., Goru Dogan, T., & Bozkurt, A. (2023). The use of artificial intelligence (AI) in online learning and distance education processes: A systematic review of empirical studies. *Applied Sciences*, 13(5), 3056. Google Scholar
- [38] Rizzo, C., Bagna, G., & Tuček, D. (2024). Do managers trust AI? An exploratory research based on social comparison theory. *MANAGEMENT DECISION*, 1-17. Google Scholar
- [39] Helo, P., & Hao, Y. (2022). Artificial intelligence in operations management and supply chain management: An exploratory case study. *Production Planning & Control*, 33(16), 1573-1590. Google Scholar
- [40] Cooper, G. (2023). Examining science education in ChatGPT: An exploratory study of generative artificial intelligence. *Journal of Science Education and Technology*, 32(3), 444-452. Google Scholar
- [41] Aithal, P. S., & Aithal, S. (2023). New Research Models under Exploratory Research Method. A Book "Emergence and Research in Interdisciplinary Management and Information Technology" edited by P. K. Paul et al. Published by New Delhi Publishers, New Delhi, India, 109-140. Google Scholar
- [42] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. Google Scholar
- [43] Russell, S. J., & Norvig, P. (2020). *Artificial Intelligence: A Modern Approach* (4th ed.). Pearson. Google Scholar ✓
- [44] Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer. Google Scholar
- [45] Hinton, G., Osindero, S., & Teh, Y. W. (2006). A fast-learning algorithm for deep belief nets. *Neural Computation*, 18(7), 1527-1554. Google Scholar ✓
- [46] Mitchell, T. M. (1997). *Machine Learning*. McGraw-Hill. Google Scholar
- [47] Manning, C. D., & Schütze, H. (1999). Foundations of Statistical Natural Language Processing. MIT Press. Google Scholar
- [48] Lim, J. J., Goh, J., Rashid, M. B. M. A., & Chow, E. K. H. (2020). Maximizing efficiency of artificial intelligence-driven drug combination optimization through minimal resolution experimental design. *Advanced Therapeutics*, 3(4), 1900122. Google Scholar
- [49] Whang, S. E., Roh, Y., Song, H., & Lee, J. G. (2023). Data collection and quality challenges in deep learning: A data-centric ai perspective. *The VLDB Journal*, 32(4), 791-813. Google Scholar
- [50] Tibshirani, R. (2011). Regression Shrinkage and Selection via the Lasso. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 58(1), 267-288. https://rss.onlinelibrary.wiley.com/doi/10.1111/j.2517-6161.1996.tb02080.x. Google Scholar
- [51] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning. *Nature*, 521(7553), 436-444. https://www.nature.com/articles/nature14539. Google Scholar
- [52] Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer. Google Scholar
- [53] Blei, D. M., Ng, A. Y., & Jordan, M. I. (2017). Latent Dirichlet Allocation. *Journal of Machine Learning Research*, 3(4), 993-1022. https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf. Google Scholar

- [54] Magerman, D. M. (1995). Statistical decision-tree models for parsing. arXiv preprint cmp-lg/9504030. Google Scholar
- [55] Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. *Big Data & Society*, *3*(2), 2053951716679679. Google Scholar ₹
- [56] Xiong, Y., Zhang, Y., Zhang, F., Wu, C., Qin, F., & Yuan, J. (2023). Applications of artificial intelligence in the diagnosis and prediction of erectile dysfunction: a narrative review. *International Journal of Impotence Research*, 35(2), 95-102. Google Scholar
- [57] Ho, T. T., Park, J., Kim, T., Park, B., Lee, J., Kim, J. Y., ... & Choi, S. (2021). Deep learning models for predicting severe progression in COVID-19-infected patients: Retrospective study. *JMIR medical informatics*, 9(1), e24973. Google Scholar
- [58] Mahadevkar, S. V., Patil, S., Kotecha, K., Soong, L. W., & Choudhury, T. (2024). Exploring AIdriven approaches for unstructured document analysis and future horizons. *Journal of Big Data*, *II*(1), 92. Google Scholar
- [59] Păvăloaia, V. D., & Necula, S. C. (2023). Artificial intelligence as a disruptive technology—a systematic literature review. *Electronics*, 12(5), 1102. Google Scholar
- [60] Hauschild, J. L. (2023). Examining the Effect of Word Embeddings and Preprocessing Methods on Fake News Detection (Doctoral dissertation, The University of Nebraska-Lincoln). Google Scholar
- [61] Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. *Journal of Machine Learning Research*, 3(Jan), 993-1022. https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf. Google Scholar
- [62] MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In *Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability* (Vol. 1, pp. 281-297). https://projecteuclid.org/euclid.bsmsp/1200512992. Google Scholarx
- [63] Kohonen, T. (2013). Essentials of the self-organizing map. *Neural networks*, 37, 52-65. Google Scholar
- [64] Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. *Proceedings of the National Academy of Sciences*, 101(Suppl 1), 5228-5235. https://doi.org/10.1073/pnas.0307752101.
- [65] Kasula, B. Y. (2016). Advancements and Applications of Artificial Intelligence: A Comprehensive Review. *International Journal of Statistical Computation and Simulation*, 8(1), 1-7. Google Scholar
- [66] Lu, Y. (2019). Artificial intelligence: a survey on evolution, models, applications and future trends. *Journal of Management Analytics*, 6(1), 1-29. Google Scholar≯
- [67] Aithal, P. S., Shailashree, V., & Kumar, P. M. (2015). A new ABCD technique to analyze business models & concepts. *International Journal of Management, IT and Engineering*, 5(4), 409-423. Google Scholar
- [68] Aithal, P. S. (2016). Study on ABCD analysis technique for business models, business strategies, operating concepts & business systems. *International Journal in Management and Social Science*, 4(1), 95-115. Google Scholar
- [69] Panakaje, N. (2023). Educational Loan for Religious Minority Under Arivu Scheme. *International Journal of Case Studies in Business, IT and Education (IJCSBE)*, 7(1), 26-35. Google Scholar
- [70] Maiya, A. K., & Aithal, P. S., (2023). A Review-based Research Topic Identification on How to Improve the Quality Services of Higher Education Institutions in Academic, Administrative, and Research Areas. *International Journal of Management, Technology, and Social Sciences (IJMTS)*, 8(3), 103-153. Google Scholar

- [71] Mahesh, K. M., Aithal, P. S. & Sharma, K. R. S., (2023). Impact of Aatmanirbharta (Self-reliance) Agriculture and Sustainable Farming for the 21st Century to Achieve Sustainable Growth. *International Journal of Applied Engineering and Management Letters (IJAEML)*, 7(2), 175-190. Google Scholar
- [72] Shubhrajyotsna Aithal & P. S. Aithal (2023). Importance of Circular Economy for Resource Optimization in Various Industry Sectors A Review-based Opportunity Analysis. *International Journal of Applied Engineering and Management Letters (IJAEML)*, 7(2), 191-215. Google Scholar
- [73] Ahmed, H. K., & Aithal, P. S. (2024). ABCD Analysis of Voice Biometric System in Banking. *International Journal of Management, Technology and Social Sciences (IJMTS)*, 9(2), 1-17. Google Scholar
- [74] Shailashree, K., & Aithal, P. S. (2024). The Influence of Socio-Economic Factors on Savings and Investment Decisions of School Teachers-A Study with Reference to Women Teachers in Kodagu District of Karnataka. *International Journal of Management, Technology and Social Sciences (IJMTS)*, 9(1), 33-46. Google Scholar
- [75] Aithal, P. S., & Aithal, S. (2023). Key Performance Indicators (KPI) for Researchers at Different Levels & Strategies to Achieve it. *International Journal of Management, Technology and Social Sciences (IJMTS)*, 8(3), 294-325. Google Scholar
- [76] Varshini, B. P. (2020). Study on Factors that Influence Students Perception of a Web Based Recruiting System at the College Level in Coimbatore Region (Doctoral dissertation, Anna University, Chennai). pp. 24-37. Google Scholar
- [77] Radha, P., & Aithal, P. S. (2024). ABCD Analysis of Stakeholder Perspectives on the Conceptual Model: Unveiling Synergies between Digital Transformation and Organizational Performance in Manufacturing. *International Journal of Applied Engineering and Management Letters* (*IJAEML*), 8(1), 15-38. Google Scholar
- [78] Aithal, P. S., Kumar, P. M., & Shailashree, V. (2016). Factors & elemental analysis of six thinking hats technique using ABCD framework. *International Journal of Advanced Trends in Engineering and Technology (IJATET)*, *I*(1), 85-95. Google Scholar
- [79] Aithal, P. S., & Aithal, S. (2018). Factor & Elemental Analysis of Nanotechnology as Green Technology using ABCD Framework. *International Journal of Management, Technology, and Social Sciences (IJMTS)*, 3(2), 57-72. Google Scholar
- [80] Aithal, P. S., & Aithal, S. (2017). Factor Analysis based on ABCD Framework on Recently Announced New Research Indices. *International Journal of Management, Technology, and Social Sciences (IJMTS)*, 1(1), 82-94. Google Scholar
- [81] Aithal, P. S., & Kumar, P. M. (2016). CCE Approach through ABCD Analysis of 'Theory A'on Organizational Performance. *International Journal of Current Research and Modern Education (IJCRME)*, 1(2), 169-185. Google Scholarx
- [82] Aithal, P. S., Shailashree, V., & Kumar, P. M. (2016). Application of ABCD Analysis Framework on Private University System in India. *International journal of management sciences and business research*, 5(4), 159-170. Google Scholar
- [83] Ashwini, V., & Aithal, P. S. (2024). Quantitative ABCD Analysis: Consumers' Purchase Intention for Eco-friendly Bags. *International Journal of Management, Technology and Social Sciences (IJMTS)*, 9(1), 1-32. Google Scholar
- [84] Shetty, V., & Abhishek, N. (2024). Beneficiaries Behavioural Intention Towards Primary Agricultural Co-operative Credit Society—A Quantitative ABCD Analysis. *International Journal of Case Studies in Business, IT and Education (IJCSBE)*, 8(1), 71-114. Google Scholar

- [85] Pai, R. (2024). Workforce Diversity in an Organization—A Quantitative ABCD Analysis. *International Journal of Management, Technology and Social Sciences (IJMTS)*, 9(1), 169-191. Google Scholar×
- [86] Lobo, S., & Bhat, S. (2024). A Quantitative ABCD Analysis of Factors Driving Share Price Volatility in the Indian Pharmaceutical Sector. *International Journal of Management, Technology and Social Sciences (IJMTS)*, 9(2), 18-52. Google Scholar
- [87] Venkata Lakshmi Suneetha M. & Aithal, P. S. (2024). Quantitative ABCD Analysis: Indian Household and Personal Care Sector. *International Journal of Case Studies in Business, IT and Education (IJCSBE)*, 8(2), 160-184. Google Scholar
